【数学】中2-17 連立方程式④ 代入法編 - 質問解決D.B.(データベース)

【数学】中2-17 連立方程式④ 代入法編

問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
投稿日:2013.05.20

<関連動画>

【数学】中2-11 文字式の利用③ 2けたの自然数編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!

◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。

◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
この動画を見る 

【高校受験対策】数学-規則性5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ます目が書いてあるボード上で,次の規則にしたがって,円形のコマを進める.

<規則>
①最初に,図1のようにボードの左下のます目にコマをおく.
②さいころを1回振って出た目の数が奇数ならば上方向に,
偶数ならば右方向に出た目の数だけコマを進める.
ただし,コマがます目の端まで進めば,それまでとは反対方向にコマを進める.
③続けて2回目のさいころを振るとき,
コマが1回目に進んだ位置から②の規則にしたがってコマを進め,
コマが2回目に進んだ位置をコマが止まるます目とする.

(1)さいころを2回振って,$5→6$の順に目が出た.
$4\times 4$のます目の中で,コマが止まるます目に○印を記入しなさい.

(2)さいころを2回振って,$4\times 4$のます目のボード上でコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

(3) さいころを2回振って,$5\times 5$のます目(図2)のボード上で,
規則にしたがってコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

図は動画内参照
この動画を見る 

equation : Shirotan's cute kawaii math show #数学 #小学生テスト #高校入試 #占い #高校受験 #勉強 #公文式 #歌ってみた #式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
aを定数とする。x,yについての連立方程式
4y-3x=a
2x-3y=4
の解がx+y=aを満たすとき、定数aの値を求めよ。
この動画を見る 

【高校受験対策】数学-証明5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.

①$EF=OB$であることを証明しなさい.

②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.

図は動画内を参照
この動画を見る 

【数学】確率の求め方間違っていませんか?確率の前提の話 前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方で、間違った数え方していませんか?
確率の計算方法について解説します。

大小二つのサイコロを振った時、目の合計が3になる確率は?
二つのサイコロを振った時、目の合計が3になる確率は?

答えに違いはある??
この動画を見る 
PAGE TOP