【数学】中2-17 連立方程式④ 代入法編 - 質問解決D.B.(データベース)

【数学】中2-17 連立方程式④ 代入法編

問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
投稿日:2013.05.20

<関連動画>

目で見てわかる乗法公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
$(x+a)^2 = x^2+2ax+a^2$
$(x-a)^2 = x^2-2ax+a^2$
*図は動画内参照
この動画を見る 

1次関数の文章題の解き方

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#文章題#文章題その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1次関数の文章題に関して解説していきます。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

【高校受験対策】数学-関数39

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
この動画を見る 

話題の三角関数で加法定理を回転変換して解く~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角関数で加法定理を回転変換して解く解き方に関して解説していきます.
この動画を見る 
PAGE TOP