微分方程式④-1【同次形】(高専数学 数検1級) - 質問解決D.B.(データベース)

微分方程式④-1【同次形】(高専数学 数検1級)

問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}-\frac{2t}{x}$
(2)$\frac{dx}{dt}=\frac{x}{t}+cos^2\frac{x}{t}$
(3)$\frac{dx}{dt}=\frac{x}{t}+e^{-\frac{x}{t}}$
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}-\frac{2t}{x}$
(2)$\frac{dx}{dt}=\frac{x}{t}+cos^2\frac{x}{t}$
(3)$\frac{dx}{dt}=\frac{x}{t}+e^{-\frac{x}{t}}$
投稿日:2020.12.05

<関連動画>

#34 数検1級1次 過去問 積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\infty}\displaystyle \frac{1}{(x^2+1)^4}\ dx$を計算せよ。
この動画を見る 

重積分⑦-4【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(4-x^2-y^2)dxdy$
$D:x^2+(y-1)^2 \leqq 1 $ , $y \leqq x$
この動画を見る 

#60数検1級1次「ええ問題!落とし穴に注意」 数検1級1次

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
全ての実数$x$について
$\displaystyle \frac{\pi}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$とするとき、次の値を求めよ。
$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$

出典:数検1級1次
この動画を見る 

練習問題43 区分求積法 数検1級1次 教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ {}_{ 2n } P_n }$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$
この動画を見る 

#67数学検定1級1次「こんな問題で時間使いたくない」 #因数分解

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)$を因数分解せよ

出典:数検1級1次
この動画を見る 
PAGE TOP