【高校受験対策/数学】関数51 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数51

問題文全文(内容文):
高校受験対策・関数51

Q
妹と兄は、家から2310mはなれた図書館へ行きました。
妹は歩いて家を出発し、一定の速さで進み、25分後に家から1500mはなれた地点を通過し、図書館まで行きました。
兄は妹が家を出発してから20分後に自転車で家を出発し、一定の速さで進み、その5分後に家から
700mはなれた地点に着きました。
右の図は、妹が家を出発してからの時間を$x$ 分、家からの道のりを$y$ mとしたとき、妹・兄それぞれの$x$と$y$の関係をグラフに表したものです。
兄のグラフはそのときのようすを途中まで表しています。

①兄のグラフの傾きを求めなさい。

②兄は妹が家を出発してから25分後に自転車が故障し、 少しの間立ち止まってしまいました。
その後、故障前と同じ一定 の速さで進んだところ、妹と同時に図書館に着きました。
兄が立ち止まっていた時間は何分間ですか。その時間を求めなさい。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数51

Q
妹と兄は、家から2310mはなれた図書館へ行きました。
妹は歩いて家を出発し、一定の速さで進み、25分後に家から1500mはなれた地点を通過し、図書館まで行きました。
兄は妹が家を出発してから20分後に自転車で家を出発し、一定の速さで進み、その5分後に家から
700mはなれた地点に着きました。
右の図は、妹が家を出発してからの時間を$x$ 分、家からの道のりを$y$ mとしたとき、妹・兄それぞれの$x$と$y$の関係をグラフに表したものです。
兄のグラフはそのときのようすを途中まで表しています。

①兄のグラフの傾きを求めなさい。

②兄は妹が家を出発してから25分後に自転車が故障し、 少しの間立ち止まってしまいました。
その後、故障前と同じ一定 の速さで進んだところ、妹と同時に図書館に着きました。
兄が立ち止まっていた時間は何分間ですか。その時間を求めなさい。
投稿日:2020.12.20

<関連動画>

【挑戦しよう!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$

の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$

慶應義塾高校過去問
この動画を見る 

【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【これが入試問題…!?】確率:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
Aさんは,98%の確率で予想を当てる天才スカウトマンBからスカウトされました.
そのことが嬉しくなりお母さんに相談しました.
そのときの会話の中の$ (1)~(8)$に当てはまる数を答えなさい.
ただし,$ (8)$は小数第一位までの概算で答えること.

母:そんなうまい話,あるはずないからやめときなさい.

A:最初はそう思ったけど,インターネットで調べてみたら,
Bさんって,98%の確率でメジャーデビューできるか
できないか予想を当てることができる天才スカウトマンなのよ.
 
 その人から声をかけられたのだから,ほぼ確定みたいなものだよ.

母:じゃあ実際に計算してみようか?

この100万人に対して,Bさんが予想した場合を考えてみると,
メジャーデビューできる100人のうちの$ (1)$人はBさんの予想が当たって,
$ (2)$人は外れるというわけね.

100万人のアイドル志望者のうち,メジャーデビューできない人は?

A:$ (3)$人

母:$ (3)$人のうちのBさんの予想が当たるのは$ (4)$人,
外れるのは$ (5) $人ということになるよね.

さあ ここからが問題です.

あなたのようにBさんに「※」と予想される人のうち,
 実際にメジャーデビューできる確率はいくらでしょう?

A:Bさんが「※」と予想する人というのは全部で$ (6)$人で,
そのうち実際にメジャーデビューできる人は$ (7) $人だからその確率は........。

 えーーーっ!$ (8)$%未満なの?

大阪教育大学附属高等学校平野校舎過去問


この動画を見る 

おすすめの解き方

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】この形の問題の裏技集(角の二等分線と内角の和)
この動画を見る 
PAGE TOP