大学入試問題#147 三重大学(2020) 積分の応用 - 質問解決D.B.(データベース)

大学入試問題#147 三重大学(2020) 積分の応用

問題文全文(内容文):
(1)
$x \geqq 1$のとき
$x \geqq 1+log\ x$を示せ


(2)
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{1+log\ x}dx \geqq \displaystyle \frac{1}{2}$を示せ

出典:2020年三重大学 入試問題
チャプター:

04:25~ 解答のみ掲載

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$x \geqq 1$のとき
$x \geqq 1+log\ x$を示せ


(2)
$\displaystyle \int_{1}^{e}\displaystyle \frac{log\ x}{1+log\ x}dx \geqq \displaystyle \frac{1}{2}$を示せ

出典:2020年三重大学 入試問題
投稿日:2022.03.21

<関連動画>

大学入試問題#230 首都大学東京(2020) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{1}{(x^2+1)^3}dx$

出典:2020年首都大学東京 入試問題
この動画を見る 

大学入試問題#333 青山学院大学(2013) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{log\ a}\displaystyle \frac{e^x}{e^x+a}dx$

出典:2013年青山学院大学 入試問題
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (3)\int_0^{\frac{2}{3}\pi}x\sin2xdx=\frac{\pi}{\boxed{イ}}+$
$\frac{\boxed{ウ}}{\boxed{エ}}\sqrt{\boxed{オ}}$である。

2022上智大理工学部過去問
この動画を見る 

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{2}}^{2} |log\ x| dx$

出典:2016年筑波大学
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=f(x) (0 \leqq x \lt 1)$が次の条件を満たすとする。
・$f(0)=0$
・$0 \lt x \lt 1$のとき$f'(x) \gt 0$
・$0 \lt a \lt 1$を満たすすべての実数aについて、曲線C上の点$(a, f(a))$
における接線と直線$x=1$との交点をQとするとき、$PQ=1$
この時以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$\int_0^{\frac{1}{2}}(1-x)f'(x)dx$の値を求めよ。
(3)曲線Cとx軸、直線$x=1$、直線$y=f(\frac{1}{2})$で囲まれた部分の面積を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP