大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分 - 質問解決D.B.(データベース)

大学入試問題#731「手を動かす前に読みをいれる」 東京慈恵会医科大学(2004) 定積分

問題文全文(内容文):
$\theta$は$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$かつ$\tan\theta=2$を満たすとする。
$\displaystyle \int_{\frac{\pi}{4}}^{\theta} \displaystyle \frac{dx}{\sin^4x}$

出典:2004年東京慈恵医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\theta$は$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$かつ$\tan\theta=2$を満たすとする。
$\displaystyle \int_{\frac{\pi}{4}}^{\theta} \displaystyle \frac{dx}{\sin^4x}$

出典:2004年東京慈恵医科大学 入試問題
投稿日:2024.02.10

<関連動画>

#国士舘大学2022 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 6\sin\ x\ \tan^2x\ dx$

出典:2022年国士舘大学
この動画を見る 

大学入試問題#77 京都大学(2002) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。

出典:2002年京都大学 入試問題
この動画を見る 

大学入試問題#95 横浜市立大学医学部(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sqrt{ 2 }}{\sin\ x+\cos\ x}\ dx$を求めよ。

出典:2013年横浜市立大学医学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#526「イカツイのは見た目だけ」 久留米大学医学部(2017) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{4}{x^7(x^{-6}+1)^{\frac{1}{3}}} dx$

出典:2017年久留米大学医学部 入試問題
この動画を見る 
PAGE TOP