福田の入試問題解説〜東京大学2022年文系第4問〜複雑な反復試行の確率 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年文系第4問〜複雑な反復試行の確率

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}
投稿日:2022.03.20

<関連動画>

直感で出せ!計算不要⁉️面白い確率の問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
100人乗りの飛行機。

100人の乗客たちは自分の座席番号が書かれた券を持つ。
搭乗1人目の客が券を紛失し勝手に選だ席に座った。
2人目以降は自分の席が空いているならそこに座り、
そうでないなら空席をランダムに選んで座る。
このとき、最後の乗客が本来の自分の席に座れる確率は?
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第6問〜複雑な反復試行の確率と確率の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\ \overrightarrow{ v_k }\ を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\\
\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }\\
によりX_nを定める。ただし、kは1回目からn回目までの\\
コイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=8とする。X_8がOにある確率を求めよ。\\
(2)N=200とする。X_{200}がOにあり、かつ、合計200回のコイン投げで表が\\
ちょうどr回出る確率をp_rとおく。ただし0 \leqq r \leqq 200である。p_rを求めよ。\\
またp_rが最大となるrの値を求めよ。
\end{eqnarray}
この動画を見る 

確率 4S数学問題集数A 144 さいころ2個の目の積の期待値【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2個のさいころを同時に投げるとき、2個の目の積の期待値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,k,nは正の整数で、a \lt kとする。袋の中にk個の玉が入っている。そのうち\\
a個は赤玉で、残りのk-a個は青玉である。\\
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色\\
の玉をn個袋に追加する」という操作を繰り返す。\\
(\textrm{i})1回目に赤玉が出たとき、2回目に赤玉が出る確率は\boxed{\ \ ア\ \ }である。\\
(\textrm{ii})2回目に赤玉が出る確率は\boxed{\ \ イ\ \ }である。\\
(\textrm{iii})2回目に青玉が出たとき、1回目に赤玉が出ていた確率は\boxed{\ \ ウ\ \ }である。\\
(\textrm{iv})この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点\\
を得るとき、得点の合計が4点となる確率は\boxed{\ \ エ\ \ }である。\\
\end{eqnarray}
この動画を見る 
PAGE TOP