問題文全文(内容文):
$x$についての不等式$\left( \log_{ 3 } \frac{x}{8}\right)\cdot\left( \log_{ 2 }8x\right)\leqq \left( \log_{ 3 }2\right)\cdot\left( \log_{ 2 } \frac{8}{x}\right)$を解くと、$\frac{\fbox{ ク }}{\fbox{ ケコ }}\leqq x \leqq \fbox{ サ }$である。
$x$についての不等式$\left( \log_{ 3 } \frac{x}{8}\right)\cdot\left( \log_{ 2 }8x\right)\leqq \left( \log_{ 3 }2\right)\cdot\left( \log_{ 2 } \frac{8}{x}\right)$を解くと、$\frac{\fbox{ ク }}{\fbox{ ケコ }}\leqq x \leqq \fbox{ サ }$である。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x$についての不等式$\left( \log_{ 3 } \frac{x}{8}\right)\cdot\left( \log_{ 2 }8x\right)\leqq \left( \log_{ 3 }2\right)\cdot\left( \log_{ 2 } \frac{8}{x}\right)$を解くと、$\frac{\fbox{ ク }}{\fbox{ ケコ }}\leqq x \leqq \fbox{ サ }$である。
$x$についての不等式$\left( \log_{ 3 } \frac{x}{8}\right)\cdot\left( \log_{ 2 }8x\right)\leqq \left( \log_{ 3 }2\right)\cdot\left( \log_{ 2 } \frac{8}{x}\right)$を解くと、$\frac{\fbox{ ク }}{\fbox{ ケコ }}\leqq x \leqq \fbox{ サ }$である。
投稿日:2024.08.26





