大学入試問題#49 神戸大学(2021) 極値の判定 - 質問解決D.B.(データベース)

大学入試問題#49 神戸大学(2021) 極値の判定

問題文全文(内容文):
$a$:実数
$f(x)=ax+\cos\ x+\displaystyle \frac{1}{2}\sin2x$が極値をもたないように$a$の値の範囲を求めよ。

出典:2010年神戸大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a$:実数
$f(x)=ax+\cos\ x+\displaystyle \frac{1}{2}\sin2x$が極値をもたないように$a$の値の範囲を求めよ。

出典:2010年神戸大学 入試問題
投稿日:2021.11.25

<関連動画>

福田の数学〜早稲田大学2024教育学部第3問〜法線上の点の座標と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線 $C : y = x ^ 2$ 上に点$P(t, t²)$をとる。$C$の点$P$における法線上に点$Q$を、$PQ=1$ であり、点$Q$の$y$座標が点$P$の$y$座標よりも大きくなるようにとる。 点$Q$の$x$座標を$f(t)$ とおく。次の問いに答えよ。
(1) $f(t)$ を求めよ。
(2) $t$が$0\leqq t$の範囲を動くときの$f(t)$の最小値を求めよ。
この動画を見る 

福田の数学〜神戸大学2023年文系第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ A, Bの2人が、はじめに、Aは2枚の硬貨を、Bは1枚の硬貨を持っている。
2人は次の操作(P)を繰り返すゲームを行う。
(P)2人は持っている硬貨すべてを同時に投げる。それぞれが投げた硬貨のうち表がでた硬貨の枚数を数え、その枚数が少ない方が相手に1枚の硬貨を渡す。
操作(P)を繰り返し、2人のどちらかが持っている硬貨の枚数が3枚となった時点でこのゲームは終了する。操作(P)をn回繰り返し行ったとき、Aが持っている硬貨の枚数が3枚となってゲームが終了する確率を$p_n$とする。ただし、どの硬貨も1回投げたとき、表の出る確率は$\frac{1}{2}$とする。以下の問いに答えよ。
(1)$p_1$の値を求めよ。
(2)$p_2$の値を求めよ。
(3)$p_3$の値を求めよ。

2023神戸大学文系過去問
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第5問〜分数関数のグラフと解の存在範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)関数

$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$

の増減を調べ、グラフの概形をかけ。

(2)実数$x,y,z$が、条件

$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3

\end{array}
\right.
\end{eqnarray}$

を満たしながら動くとき、

$x$が取り得る値の範囲を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

大学入試問題#372「初手が命」 兵庫県立大学2015 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}}\displaystyle \frac{dx}{\cos^4x}$

出典:2015年兵庫県立大学 入試問題
この動画を見る 

早稲田 微分・積分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
この動画を見る 
PAGE TOP