福田の数学〜大阪大学2024年理系第2問〜複素数の表す領域 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第2問〜複素数の表す領域

問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を複素数とし、複素数$z$に対して
$f(z)$=$z$+$\alpha z$+$\beta$
とおく。$\alpha$, $\beta$は
|$f(z)$-3|≦1 かつ |$f(i)$-1|≦3
を満たしながら動く。ただし、$i$は虚数単位である。
(1)$f(1+i)$がとりうる値の範囲を求め、複素数平面上に図示せよ。
(2)$f(1+i)$=0であるとき、$\alpha$, $\beta$の値を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を複素数とし、複素数$z$に対して
$f(z)$=$z$+$\alpha z$+$\beta$
とおく。$\alpha$, $\beta$は
|$f(z)$-3|≦1 かつ |$f(i)$-1|≦3
を満たしながら動く。ただし、$i$は虚数単位である。
(1)$f(1+i)$がとりうる値の範囲を求め、複素数平面上に図示せよ。
(2)$f(1+i)$=0であるとき、$\alpha$, $\beta$の値を求めよ。
投稿日:2024.06.01

<関連動画>

福田の数学〜上智大学2023年TEAP利用型理系第4問Part2〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

お茶の水女子大(類) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2+3b^2=2c^2$これを満たす自然数$(a,b,c)$は存在しないことを証明せよ

出典:お茶の水女子大学 過去問
この動画を見る 

整数、素数、京都大学入試問題 数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qともに素数
$p^q+q^p$が素数となるp,qをすべて求めよ

京大過去問
この動画を見る 

大学入試問題#564「構想力が鍛えられる問題!」 東京帝国大学(1934) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x+4}{\sqrt{ x^2+2x+5 }}\ dx$

出典:1934年東京帝国大学 入試問題
この動画を見る 

大学入試問題#827「とりま絶対値はずそ:0≦t≦π/2」 #筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\sin\ t\ |\ dx$

出典:2020年筑波大学
この動画を見る 
PAGE TOP