問題文全文(内容文):
$\displaystyle \int_{log2}^{log4}\displaystyle \frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1}dx$
出典:2009年防衛大学校
$\displaystyle \int_{log2}^{log4}\displaystyle \frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1}dx$
出典:2009年防衛大学校
チャプター:
00:00 問題紹介
00:08 本編スタート
04:49 作成した解答①
05:01 作成した解答②
05:13 エンディング(視聴者の兄いえてぃさんが提供してくれました。)
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{log2}^{log4}\displaystyle \frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1}dx$
出典:2009年防衛大学校
$\displaystyle \int_{log2}^{log4}\displaystyle \frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1}dx$
出典:2009年防衛大学校
投稿日:2022.08.30