大学入試問題#38 日本大学(2021) 三角関数 - 質問解決D.B.(データベース)

大学入試問題#38 日本大学(2021) 三角関数

問題文全文(内容文):
$0 \leqq \theta \leqq \displaystyle \frac{5}{6}\pi$において
方程式
$3\sin(\theta+\displaystyle \frac{\pi}{3})+5\ \cos(\theta-\displaystyle \frac{\pi}{6})=0$を解け。

出典:2021年日本大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \leqq \displaystyle \frac{5}{6}\pi$において
方程式
$3\sin(\theta+\displaystyle \frac{\pi}{3})+5\ \cos(\theta-\displaystyle \frac{\pi}{6})=0$を解け。

出典:2021年日本大学 入試問題
投稿日:2021.10.21

<関連動画>

大学入試問題#170 東北大学(大正14年) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int log(log\ x)+\displaystyle \frac{1}{log\ x}\ dx$

出典:大正14年東北大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xの関数が印刷されているカード25枚が1つの袋に入っている。
その内訳は、11枚に$1-3x$、9枚に$1-2x$、4枚に$1-2x+2x^2$、1枚に$1-3x+5x^2$である。
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを
100回繰り返したところ、記録の内訳は$1-3x$が46回、$1-2x$が35回、$1-2x+2x^2$が15回、
$1-3x+5x^2$が4回であった。
(1)記録された関数の実数xにおける値を$a_1,a_2,\ldots,a_{100}$とおく。
$a_1,a_2,\ldots,a_{100}$の平均値は、xの値を定めるとそれに対応して値が定まるので、
xの関数である。この関数は$x=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$のとき最小となり、その値は$-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}$である。
(2)記録された関数の$x=0$から$x=1$までの定積分を$b_1,b_2,\ldots,b_{100}$とおく。
$b_1,b_2,\ldots,b_{100}$の平均値は$-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
分散は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。
また、記録された関数の$x=1$における値を$c_1,c_2,\ldots,c_{100}$とおくとき、
100個のデータの組$(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})$の共分散は$\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている
関数の$x=1$における値が負である条件の下で、その関数の0から1までの定積分
が負である条件つき確率は$\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}$である。

2022慶應義塾大学経済学部過去問
この動画を見る 

大学入試問題#821「王道問題」 #筑波大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} \displaystyle \frac{2x+3}{x^2+2x+4} dx$

出典:2022年筑波大学
この動画を見る 

大学入試問題#508「入試の1問目がこれは萎える」 防衛医科大学(2015) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$a^5-12a^4+36a^3-81a+1,\ a^2-6a$が共に有理数となる無理数$a$を求めよ

出典:2015年防衛医科大学 入試問題
この動画を見る 

福田の数学〜筑波大学2023年理系第2問〜放物線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を実数とし、$\alpha$>1とする。曲線$C_1$:$y$=|$x^2$-1|と曲線$C_2$:$y$=-$(x-\alpha)^2$+$\beta$が、点($\alpha$, $\beta$)と点(p, q)の2点で交わるとする。また、$C_1$と$C_2$で囲まれた図形の面積を$S_1$とし、$x$軸、直線$x$=$\alpha$、および$C_1$の$x$≧1を満たす部分で囲まれた図形の面積を$S_2$とする。
(1)pを$\alpha$を用いて表し、0<p<1であることを示せ。
(2)$S_1$を$\alpha$を用いて表せ。
(3)$S_1$>$S_2$であることを示せ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP