【数A】【場合の数】余事象の使い方 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【場合の数】余事象の使い方 ※問題文は概要欄

問題文全文(内容文):
大中小3個のさいころを投げるとき、次のような場合は何通りあるか
(1)目が全て異なる      (2)少なくとも2個が同じ目
(3)目の積が3の倍数      (4)目の和が奇数     

正四面体の1つの面を下にしておき、1つの辺を軸として3回転がす。2回目
以降、直前にあった場所を通らないようにするとき、次の数を求めよ
(1)転がし方の総数     (2)3回転がした後の正四面体の位置の総数
チャプター:

0:00 オープニング
0:05 問題1解説
3:38 問題2解説
6:48 エンディング

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大中小3個のさいころを投げるとき、次のような場合は何通りあるか
(1)目が全て異なる      (2)少なくとも2個が同じ目
(3)目の積が3の倍数      (4)目の和が奇数     

正四面体の1つの面を下にしておき、1つの辺を軸として3回転がす。2回目
以降、直前にあった場所を通らないようにするとき、次の数を求めよ
(1)転がし方の総数     (2)3回転がした後の正四面体の位置の総数
投稿日:2024.11.08

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(5)〜確率漸化式の基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)地点Aと地点Bがあり、Kさんは時刻0に地点Aにいる。Kさんは1秒ごとに以下の確率で移動し、時刻0からn秒後に地点Aか地点Bにいる。
$\left\{\begin{array}{1}
・地点Aにいるとき\\
\frac{1}{2}の確率で地点Aにとどまり、\frac{1}{2}の確率で地点Bに移動する。\\
・地点Bにいるとき
\frac{1}{6}の確率で地点Bにとどまり、\frac{5}{6}の確率で地点Aに移動する。\\
\end{array}\right.$
Kさんが時刻0からn秒後に地点Aにいる確率を$a_n$、地点Bにいる確率を$b_n$で表す。ただし、nは0以上の整数とする。
(i)$a_{n+1}$を$a_n$と$b_n$で表すと$a_{n+1}$=$\boxed{\ \ サ\ \ }$$a_n$+$\boxed{\ \ シ\ \ }$$b_n$であり、$a_4$=$\boxed{\ \ ス\ \ }$
(ii)数列{$a_n$}の一般項$a_n$をnの式で表すと$\boxed{\ \ セ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

サイコロ確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロ$5$個振って目の和が$7$の倍数になる確率を求めよ.
この動画を見る 

場合の数 並び替え基本2【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・「equations」という単語の文字をすべて使って順列を作るとき、次の問いに答えよ。
(1)少なくとも一端に子音の文字がくるものは何通りあるか。
(2)eとaの間に文字が2つあるものは何通りあるか。

・A,B,C,D,E,Fの6文字をすべて使ってできる順列を、ABCDEFを1番目として自書式に並べるとき、次の問いに答えよ。
(1)140番目の文字列を求めよ。
(2)FBCDAEは何番目の文字列か。
この動画を見る 

1年間で必要な服の枚数は?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1年間で必要な服の枚数を計算
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 次の問題\hspace{310pt}\\
問題\\
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同\\
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が\\
終了する確率 p_nを求めよ。\\
に対する次の答案Aについて以下の問いに答えよ。\\
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに\\
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要\\
はない。誤りがないときは「誤りなし」と答えよ。\\
(2) 答案Aで導かれたp_nと正解のp_nとで値が異なるとき、値が異なる最小のnを\\
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは\\
「すべて一致する」と答えよ。\\
\\
答案A\\
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために\\
必要な回数がk回(k \geqq 0)である確率をp_n(k)とする。このとき、\\
kは0,1,2のいずれかであるから、確率の総和は\\
p_n(0)+p_n(1)+p_n(2)=1\\
である。また、p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2) であるから漸化式\\
p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)\\
を得る。ここで\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1なので、q_n=2^n(p_n-\frac{1}{7})とすれば\\
q_n+q_{n+1}+q_{n+2}=0\\
である。よってn \geqq 4に対して\\
q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}\\
が成立する。以上より、\\
Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3      (nが3で割り切れるとき)\\
\end{array}
\right.\\
\\
とすれば求める確率は\\
p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
である。また最初の2項は定義よりp_1=p_2=0でありp_nの漸化式でn=1とすれば\\
p_1+2p_2+4p_3=1 であるからp_3=\frac{1}{4}である。さらに\\
q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}\\
\\
である。したがって\\
p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
となる。
\end{eqnarray}

2022浜松医科大学医学部過去問
この動画を見る 
PAGE TOP