【数C】【空間ベクトル】3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。

問題文全文(内容文):
3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。
チャプター:

0:00 問題概要
0:16 方針
1:08 解答
3:00 ベクトルの大きさを求めていく

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(3,6,0)、B(1,4,0)、C(0,5,4)の定める平面ABCに、点P(3,4,5)から垂線PHを下ろす。線分PHの長さを求めよ。
投稿日:2025.11.01

<関連動画>

【数C】【空間ベクトル】△ABCについて,cosAの値と面積Sを求めよ(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
この動画を見る 

【数C】【空間ベクトル】平行六面体OADB-CEGFにおいて、線分OA,OB,GE,GF,OCの中点をそれぞれP,Q,R,S,Tとし重心をGとする。四角形PRSQは平行四辺形であることを示せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分OA,OB,OCを3辺とする平行六面体OADB-CEGFにおいて、線分OA,OB,GE,GF,OCの中点をそれぞれP,Q,R,S,Tとし、△ABCの重心をGとする。
(1) 四角形PRSQは平行四辺形であることを示せ。
(2) 3点T,H,Dは一直線上にあることを示し、TH:HDを求めよ
この動画を見る 

【数C】空間ベクトル:球面の方程式!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

【平面の方程式の求め方はこれ!】平面の方程式の求め方を2つ解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
平面の方程式の求め方について解説します。
この動画を見る 
PAGE TOP