福田のおもしろ数学022〜10秒でできたら天才〜2つの円と線分 - 質問解決D.B.(データベース)

福田のおもしろ数学022〜10秒でできたら天才〜2つの円と線分

問題文全文(内容文):
Xを求めよ。
※図は動画内参照
単元: #中2数学#数A#図形の性質#方べきの定理と2つの円の関係#三角形と四角形#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Xを求めよ。
※図は動画内参照
投稿日:2024.01.17

<関連動画>

73-28を解くように

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#過去問解説(学校別)#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
S-T=?
*図は動画内参照

大阪星光学院中学校
この動画を見る 

連立方程式はもっと楽に解こうよ

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
連立方程式を簡単に解く方法に関して解説していきます.
この動画を見る 

【高校受験対策】数学-図形21/後編

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21

Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$\angle APQ=90°$です。
このとき、次の各問に答えなさい。

①$△APQ$と$△CDQ$が合同であることを証明しなさい。

②$\angle PAQ=52°$のとき、$\angle PQC$の大きさを求めなさい。

③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る 

【中学数学】連立方程式標準の宿題Live【中2夏期講習②】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
(1)
\left\{
\begin{array}{l}
0.2x-0.3y=0.7x+0.4y-0.6 \\
6(5x+2y)=3x-2
\end{array}
\right.
$

$
(2)
\left\{
\begin{array}{l}
\displaystyle \frac{4}{3}x-\frac{3}{4}y=-14\\
0.3x-0.7y=-7.4
\end{array}
\right.
$

$
(3)
\left\{
\begin{array}{l}
\displaystyle \frac{5x+3y}{4}=\frac{x+5}{2}\\
\displaystyle \frac{4x-7y+3}{11}=2
\end{array}
\right.
$

$
(4)x-3y=5x+3y=4x-y+5
$

$(5)
\left\{
\begin{array}{l}
ax-by=1\\
bx-ay=8
\end{array}
\right.
$
の解が$(x,y)=(3,2)$のとき、定数$a,b$の値を求めよ
この動画を見る 

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 
PAGE TOP