福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。 - 質問解決D.B.(データベース)

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}
投稿日:2022.01.17

<関連動画>

データの分析 4STEP数Ⅰ 355 仮説検定1 【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析
指導講師: 理数個別チャンネル
問題文全文(内容文):
以前、ある芸能人を知っているか街頭で大規模なアンケートをとったところ、全体の1/8の人が知っていると答えた。その1年後、再び同じ芸能人について、100人の人にアンケートをとったところ、19人が知っていると答えた。この時、この芸能人の知名度は上がったと判断して良いか。仮説検定の考え方を用い、次の(1)、(2)の場合において考察せよ。ただし、公正な8面さいころを100回投げて1の目が出た回数を記録する実験を800セット行ったところ次の表のようになったとし、この結果を用いよ。
1の目が出た回数 4 5 6 7 8 9 10 11 12 13
度数     2 9 8 24 32 65 71 83 107 94
1の目が出た回数 14 15 16 17 18 19 20 21 22 23
合計度数     88 69 54 42 25 11 7 5 3 1 800

(1) 基準となる確率 0.05
(2) 基準となる確率 0.01
この動画を見る 

【高校数学】いろんな方法で因数分解してみた #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^5+x^4+x^3+x^2+x+1$

因数分解せよ。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問5

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問5. 次の問いに答えなさい。
(7) 地点Aから、湖を隔てた地点Bまでの距離を測定するために、地点Aから100m、地点Bから60m離れたところに地点Pをとります。地点Pから地点A、Bをみて∠APBの大きさを調べたところ、∠APB=120°でした。
このとき、2地点A、B間の距離は何mですか。余弦定理を用いて求めなさい。
この動画を見る 

数と式 4STEP数Ⅰ 110,111 背理法の使うタイミング【いつものシミズ君がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式
指導講師: 理数個別チャンネル
問題文全文(内容文):
x、y、zは実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。
【110】
(1) (x-y)(y-z)=0はx=y=zであるための▢
(2) 「x>0 かつ y>0」は、xy>0であるための▢
(3) x=y=0は、「xy=0かつx+y=0」であるための▢
(4) ∠A<90は△ABCが鋭角三角形であるための▢
(5) △ABCの3辺BC,CA,ABの長さがそれぞれa,b,cとする。
    (a-b)(a²+b²=c²)=0は△ABCが直角二等辺三角形であるための▢

【111】
a,bは実数とする。次の2つの条件p、qは同値であることを証明せよ。
p:a>1かつb>1  q:a+b>2かつ(a-1)(b-1)>0
この動画を見る 

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
この動画を見る 
PAGE TOP