慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか

(1)
$x+y+z=24$

(2)
$x+y+z=24$
$x \leqq y \leqq z$

(3)
$x+2y+3z=24$

出典:2009年慶應義塾 過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか

(1)
$x+y+z=24$

(2)
$x+y+z=24$
$x \leqq y \leqq z$

(3)
$x+2y+3z=24$

出典:2009年慶應義塾 過去問
投稿日:2019.05.08

<関連動画>

【中学数学・数A】中高一貫校用問題集(代数編)確率と標本調査:確率の計算:5枚のカードを並べるときに両端や隣り合う場合の確率

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#場合の数と確率#確率#標本調査#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,Eの文字が書かれたカードが1枚ずつある。このカードをよく混ぜて1列に並べるとき、次のような場合の確率を求めよう。
(1)Aが右端にくる。
(2)AとEが両端にくる。
(3)BとCが隣り合う。
この動画を見る 

岡山県立大 順列

アイキャッチ画像
単元: #場合の数と確率#学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022岡山県立大学過去問題
●n個$(n \geqq 2)$と
○3個を1列に並べる
○がとなり合う並べ方は何通りか
*同じ色の玉は区別しない
この動画を見る 

【高校数学】確率の基本性質~和事象の確率~ 2-3【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から9までの番号をつけたカードが各数字3枚ずつ計27枚ある。
このカードから2枚を取り出すとき、2枚が同じ数字か2枚の数字の和が5以下である確率を求めよ。
この動画を見る 

数学「大学入試良問集」【5−9 確率と二項定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。

(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。

(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
この動画を見る 

【高校数学】条件付き確率例題~標準問題解いてこ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。

-----------------

2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
この動画を見る 
PAGE TOP