【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】 - 質問解決D.B.(データベース)

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

問題文全文(内容文):
$\displaystyle f(x)= \frac{2x^2-x-1}{x^2+2x+2}$ とする。
$(1)$ $\displaystyle \lim_{x \to - \infty} f(x)$ および $\displaystyle \lim_{x \to \infty} f(x)$ を求めよ。
$(2)$ 導関数 $f'(x)$ を求めよ。
$(3)$ 関数 $y=f(x)$ の最大値と最小値を求めよ。
$(4)$ 曲線 $y=f(x)$ と $x$ 軸で囲まれた部分の面積を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)= \frac{2x^2-x-1}{x^2+2x+2}$ とする。
$(1)$ $\displaystyle \lim_{x \to - \infty} f(x)$ および $\displaystyle \lim_{x \to \infty} f(x)$ を求めよ。
$(2)$ 導関数 $f'(x)$ を求めよ。
$(3)$ 関数 $y=f(x)$ の最大値と最小値を求めよ。
$(4)$ 曲線 $y=f(x)$ と $x$ 軸で囲まれた部分の面積を求めよ。
投稿日:2024.02.17

<関連動画>

【数Ⅲ】【積分とその応用】定積分置換積分、部分積分 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次を求めよ
(1) $\displaystyle \int_0^1 \sqrt{e^{1-t}}~dt$
(2) $\displaystyle \int_0^{\frac{\pi}2}\frac{\cos{2\theta}}{\sin \theta+\cos\theta}~d\theta$
(3) $\displaystyle\int_0^\pi \sin^4x~dx$
(4) $\displaystyle \int_1^2 \frac{\sqrt{x^2-4x+4}}{x}~dx$

次を求めよ
(1) $\displaystyle \int_0^\pi |\cos2\theta|~d\theta$
(2) $\displaystyle \int_0^\pi|\sin x+\cos x|~dx$


$m,n$は正の整数とする。次の定積分を求めよ。
(1) $\displaystyle \int_0^\pi \cos mx\cos nx~dx$
(2) $\displaystyle \int_0^\pi \sin mx\sin nx~dx$
(3) $\displaystyle \int_0^\pi \sin mx\cos nx~dx$


定積分$\displaystyle \int_0^\pi (1-a\sin x-b\sin2x)^2~dx$を最小にする定数$a,b$の値を求めよ。
この動画を見る 

兵庫医科大学(2021) #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#兵庫医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0} \displaystyle \frac{x^5}{(x^3-1)^2} dx$

出典:2021年兵庫医科大学 入試問題
この動画を見る 

#広島市立大学2023#不定積分#ますただ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int 2x^3e^{x^2}$ $dx$

出典:2023年広島市立大学
この動画を見る 

【数Ⅲ】【積分とその応用】次の極限値を求めよ。(1) lim[x→0]1/x∫[0→x]1/(1+cost)dt(2) lim[x→0]∫[0→x](1+sint)²/xdt他1問

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
導関数、定積分の定義を利用して、次の極限値を求めよ。
(1) $\displaystyle \lim_{ x \to 0 }\dfrac{1}{x}\int_0^x \dfrac{1}{1+cost}dt$
(2) $\displaystyle \lim_{ x \to 0 }\int_0^x \dfrac{(1+sint)^2}{x}dt$
(3) $\displaystyle \lim_{ x \to 0 }\int_0^{x^2} \dfrac{cos⁵t}{x}dt$
この動画を見る 

福田の数学〜立教大学2025理学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)定積分$\displaystyle \int_{0}^{\frac{7}{6}\pi}\sin x \sin 2x \ dx$の値は

$\boxed{エ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 
PAGE TOP