【数C】【平面上のベクトル】ベクトル方程式7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトル方程式7 ※問題文は概要欄

問題文全文(内容文):
平面上の異なる2つの定点O, Aと任意の点Pに対し,
$\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OP}=\vec{p}$とする。

次のベクトル方程式はどのような図形を表すか。
(1) $|\vec{p}+2\vec{a}|=|\vec{p}-2\vec{a}|$
(2) $2\vec{a}\cdot\vec{p}=|\vec{a}||\vec{p}|$
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の異なる2つの定点O, Aと任意の点Pに対し,
$\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OP}=\vec{p}$とする。

次のベクトル方程式はどのような図形を表すか。
(1) $|\vec{p}+2\vec{a}|=|\vec{p}-2\vec{a}|$
(2) $2\vec{a}\cdot\vec{p}=|\vec{a}||\vec{p}|$
投稿日:2025.05.23

<関連動画>

【数C】平面ベクトル:△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#平面上のベクトル#三角形の辺の比(内分・外分・二等分線)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、$AB=5,\ AC=6$、角Aの大きさは$\frac{\pi}{3}$であるとする。
Aから辺BCに垂線AHを下ろす。このとき$BH:CH=\boxed{ウ}:\boxed{エ}$である。

2022立教大学理学部過去問
この動画を見る 

【高校数学】 数B-24 ベクトルと図形②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$のとき

$S\vec{ a }+t\vec{ b }=S'\vec{ a }+t'\vec{ b } \Leftrightarrow S=S',t=t'$

◎$\vec{ a }≠\vec{ 0 },\vec{ b }≠\vec{ 0 },\vec{ a }≠\vec{ b }$とする。次の等式を満たす実数S,tの値を求めよう。

①$5\vec{ a }+S\vec{ b }=t\vec{ a }-2\vec{ b }$

②$(3S-5)\vec{ a }+t\vec{ b }=\vec{ 0 }$

③$\vec{ c }=2\vec{ a }+3\vec{ b },\vec{ d }=\vec{ a }+2\vec{ b }$のとき、$5\vec{ a }+4\vec{ b }=S\vec{ c }+t\vec{ d }$
この動画を見る 

07三重県教員採用試験(数学:9番 球面,点と平面の距離)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
球面$S:x^2+y^2+z^2-4x+8z=k$の平面
$\alpha:x-2y-z=-6$による切り口の面積が
$6\pi$のとき,$k$の値を求めよ.
この動画を見る 

【数B】ベクトル:ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\overrightarrow{a}=(4,1-5),\overrightarrow{b}=(2m,1)$が等しいとき,$l,m$の値を求めよ.
この動画を見る 
PAGE TOP