満点必須!これは落とせない【名古屋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

満点必須!これは落とせない【名古屋大学】【数学 入試問題】

問題文全文(内容文):
$f'(x)=\sin x+\displaystyle \int_{-π}^{π} f(t) dt$

$f(0)=0$

$f(x)$を求めよ

名古屋大過去問
チャプター:

00:04 問題文
00:35 解答・解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$f'(x)=\sin x+\displaystyle \int_{-π}^{π} f(t) dt$

$f(0)=0$

$f(x)$を求めよ

名古屋大過去問
投稿日:2023.12.29

<関連動画>

1都3県のFラン大学一覧 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#学校別大学入試過去問解説(数学)#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#大学入試過去問(英語)#大学入試過去問(国語)#学校別大学入試過去問解説(英語)#大学入試過去問(生物)#数学(高校生)#理科(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
速報!2025年最新版、1都3県のヤバすぎるFラン大学リストが公開され、受験界騒然!まさかのあの大学の名前が並んでいるぞ。

このリストには、人気クリエイターの藤川天が過去に**不合格になった大学**が続々登場している。具体的には、火越大学、神奈川歯科大学、そして埼玉工業大学が、藤川天が受験して落ちた場所として挙げられている。

リストには他にも、上野学園大学や東京女学館大学といった「もうなくなった」大学の名前も含まれている。また、東京音楽大学のような大学は、判定できない「別枠」としてリストに登場しているが、これには賛否の声もあるようだ。

特にネットで話題を呼んでいるのが、フェリス女学院大学のランクイン。慶応とインカレしているイメージがあるのに、こんなに下なの!?と驚きの声が上がっている。さらに、アニメや映画で架空の大学名として使われる「東都大学」が実在していたという衝撃の事実も判明したぞ。
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数a,b,cに対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$\alpha,\beta,y$を複素数とする。
$f(0)=α,f(1)=β,f(i)=(γ)$が成り立つとき、$a,b,c$をそれぞれ$\alpha,\beta,y$で表せ。
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

東大 不定方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数とする.

①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.

2006東大過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(2)〜円が直線から切り取る線分の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$t \gt 0$とし、xy平面上の直線
$l:y=-x+t$
と領域
$B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2$
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは
$t=\boxed{ム}$のときに最大値$\boxed{メ}\sqrt{\boxed{モ}}$をとる。

2022上智大学文系過去問
この動画を見る 
PAGE TOP