【みんな好き好き】因数分解:中部~全国入試問題解法 - 質問解決D.B.(データベース)

【みんな好き好き】因数分解:中部~全国入試問題解法

問題文全文(内容文):
全国の入試 中部

$x^2-2(m-1)x-2m+1$
因数分解せよ。
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
全国の入試 中部

$x^2-2(m-1)x-2m+1$
因数分解せよ。
投稿日:2021.03.04

<関連動画>

これどう?

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(x+a)^2=x^2+2ax+a^2$
図で説明してください
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

どうやったら簡単に解けるか 2022 立命館高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\frac{\sqrt 2 -2}{2}$のとき
$x^2+2x+ \frac{1}{x+1} +1 =?$

2022立命館高等学校
この動画を見る 

【まず手を動かせ!】整数:立命館高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#立命館高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2104^2 $を11で割った余りを求めなさい.

立命館高校過去問
この動画を見る 

式の値  慶應女子 B

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a-c=d-b,abcd=1のとき
(a+b+c-d)(a-b+c+d)(a+b-c+d)(a-b-c-d)

慶應義塾女子高等学校
この動画を見る 
PAGE TOP