連立方程式:東京都立国立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

連立方程式:東京都立国立高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 東京都立国立高等学校

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{4x+y-5}{2}=x+0.25y-2 \\
4x + 3y = -6
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都立国立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京都立国立高等学校

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{4x+y-5}{2}=x+0.25y-2 \\
4x + 3y = -6
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
投稿日:2021.03.28

<関連動画>

割れろ割れろ割れろ割れろ割れろ割れた

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(2×4×6×8×10)^2 - (1×2×3×4×5)^2}{31×33}$

川端高校
この動画を見る 

佐賀県立高校入試2021年「確率」

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年「確率」
-----------------
【ルール】
大小2つのさいころを同時に1回投げ、大きいさいころの出た目の数を十の位の数、小さいさいころの出た目の数を一の位の数としてけたの整数をつくる

このとき、下記の各問いに答えなさい。
ただし、(ルール)にある大小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。

(ア)【ルール】に従ってつくられる2けたの整数は、全部で何通りあるか求めなさい。

(イ)【ルール】に従ってつくられる2けたの整数が、偶数となる確率を求めなさい。

(ウ)【ルール】に従ってつくられる2けたの整数が、3の倍数となる確率を求めなさい。

(エ)まず【ルール】に従ってだけたの整数をつくり、次にその整数の十の位の数と一の位の数を入れかえた整数をつくる。
はじめにつくられる整数が、あとでつくられる整数より大きい数である確率を求めなさい。
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 11発目! x軸・y軸交点編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
この動画を見る 

面積の等しい三角形

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
面積が等しい三角形の組をすべて答えよ
*図は動画内参照
2024海星高等学校
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 
PAGE TOP