【数Ⅲ】三角関数の積分【半角の公式・積和の公式を使いこなせ】 - 質問解決D.B.(データベース)

【数Ⅲ】三角関数の積分【半角の公式・積和の公式を使いこなせ】

問題文全文(内容文):
$(1)\displaystyle \int \sin^{\Box}x dx,\displaystyle \int \cos^{\triangle}x dxの計算をせよ.$
$ \displaystyle \int \cos \Box x cos \triangle x dx,\displaystyle \int \sin \Box x \sin \triangle x dx,\displaystyle \int \sin \Box x cos \triangle x dxの計算をせよ.$
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\displaystyle \int \sin^{\Box}x dx,\displaystyle \int \cos^{\triangle}x dxの計算をせよ.$
$ \displaystyle \int \cos \Box x cos \triangle x dx,\displaystyle \int \sin \Box x \sin \triangle x dx,\displaystyle \int \sin \Box x cos \triangle x dxの計算をせよ.$
投稿日:2023.02.23

<関連動画>

福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。\\
\int xe^{-3x}dx = -(\frac{\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }})\ e^{-3x}+C\\
\int x^2e^{-3x}dx = -(\frac{\boxed{\ \ エ\ \ }\ x^2+\boxed{\ \ オ\ \ }\ x+\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }})\ e^{-3x}+C\\
また、定積分について、\\
\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{\ \ ケ\ \ }}(-1+\boxed{\ \ コ\ \ }\ e^{\boxed{\ \ サシ\ \ }}-\boxed{\ \ スセ\ \ }\ e^{-3})\\
が成り立つ。\\
\\
(2)p,q,rを実数の定数とする。関数f(x)=(px^2+qx+r)e^{-3x}がx=0で極大、\\
x=1で極小となるための必要十分条件は\\
p=\boxed{\ \ ソタ\ \ }\ r,\ \ \ q=\boxed{\ \ チ\ \ }\ r,\ \ \ \boxed{\ \ ツ\ \ }\\
である。さらに、f(x)の極小値が-1であるとすると、f(x)の極大値は\frac{e^{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}となる。\\
このとき、\int_0^1f(x)dx=\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}である。\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1\ \ \ \ \\
⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}\ \ \ \
\end{eqnarray}
この動画を見る 

高校数学:数学検定準1級1次:問題5 :部分積分

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2 (\frac{x^2}{2}+3x)e^{\frac{x}{2}} dx$

不定積分、定積分を求めよ
この動画を見る 

【数Ⅲ】部分積分【公式不要!微分して被積分関数になるものを作り出せ】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int x\cos x dxを求めよ.$
$ (2)\displaystyle \int (2x+1)\sin 3x dxを求めよ.$
$ (3)\displaystyle \int \log x dx,\displaystyle \int x\log x dx,\displaystyle \int \log(2x+1)dxを求めよ.$
$ (4)\displaystyle \int_{0}^{\pi} x^2\sin x dxを求めよ.$
$ (5)\displaystyle \int_{0}^{\pi} e^x \sin x dxを求めよ.$
この動画を見る 

【数Ⅲ】微分法・積分法:<公式忘れても大丈夫!>三角関数の微積分 ~ぐるぐる回そう~

アイキャッチ画像
単元: #微分とその応用#積分とその応用#色々な関数の導関数#不定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る 

【積分】「積分って結局なにしてるの?」について解説しました!【数学III】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
積分がなぜ成り立つかを解説します!
気になった人は是非!
この動画を見る 
PAGE TOP