ただの連立3元2次方程式 - 質問解決D.B.(データベース)

ただの連立3元2次方程式

問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+xy+xz=4 \\
y^2+xy+yz=12 \\
z^2+xz+yz=-8 \\
\end{array}
\right.
\end{eqnarray}$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+xy+xz=4 \\
y^2+xy+yz=12 \\
z^2+xz+yz=-8 \\
\end{array}
\right.
\end{eqnarray}$
投稿日:2021.08.12

<関連動画>

サクッと解こう!高校入試レベル

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三角形$ABCD$の面積を求めよ.
この動画を見る 

名古屋大・慶応(医)整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'03名古屋大学過去問題
nを自然数とするとき、$m \leqq n$でmとnの最大公約数が1となる自然数mの個数をf(n)とする。
(1)f(15)を求めよ。
(2)p,qが異なる素数のときf(pq)

'01慶応義塾大学過去問題
$\sqrt{n^2+n+34}$が整数となる自然数n
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。

東京大学過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第4問〜円周上の点の移動と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。

(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。

(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として

$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$

と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは

$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$

である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。

(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。

(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。

(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。

(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。

$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$

2021共通テスト過去問
この動画を見る 

気付けば一瞬!!!!2つのおうぎ形

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=5
斜線部の面積=?

*図は動画内参照
この動画を見る 
PAGE TOP