【大切だから解いて欲しい!】図形:岐阜県高校入試~全国入試問題解法 - 質問解決D.B.(データベース)

【大切だから解いて欲しい!】図形:岐阜県高校入試~全国入試問題解法

問題文全文(内容文):
入試問題 岐阜県の高校

図で、
$\triangle ABC$:直角二等辺三角形
$(\angle BAC=90°)$

$\triangle AED$:直角二等辺三角形
$(\angle DAE=90°)$
点$D$:辺$CB$の延長線上

$\triangle ADB = \triangle AEC$であることを
証明しなさい。
※図は動画内参照
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#岐阜県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 岐阜県の高校

図で、
$\triangle ABC$:直角二等辺三角形
$(\angle BAC=90°)$

$\triangle AED$:直角二等辺三角形
$(\angle DAE=90°)$
点$D$:辺$CB$の延長線上

$\triangle ADB = \triangle AEC$であることを
証明しなさい。
※図は動画内参照
投稿日:2020.11.19

<関連動画>

【中学数学】平面図形と角度~〇●の二等分線の裏技教えます~後半 4-6.5【中2数学】

アイキャッチ画像
単元: #中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
平面図形と角度の裏技紹介動画です
この動画を見る 

【数学】中2-19 ややこしい連立方程式②

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$5x+=-x+7y=19$

$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x-0.03y=0.08 \\
\displaystyle \frac{2}{3}x+\displaystyle \frac{y}{2}=\displaystyle \frac{8}{3}
\end{array}
\right.
\end{eqnarray}$

次の$2$組の$x,y$についての連立方程式が同じ解をもつとき、
$a,b$の値は?
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=-11 \\
-3x+2y=a
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx+2y=b \\
x-4y=5
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【続けて他の動画も見てほしい!】文字式:近畿大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#近畿大学付属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 近畿大学附属高等学校

次の問いに答えよ。
$\displaystyle \frac{ 4x-3y }{7}-\displaystyle \frac{ 3x-2y }{5}$
を計算せよ。
この動画を見る 

【中学数学】3元連立方程式の問題演習~3つの連立方程式~ 2-5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3つの連立方程式 3元連立方程式の問題演習紹介動画です
この動画を見る 

【高校受験対策/数学】死守72

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#平行と合同#確率#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守72

①$2-6$を計算しなさい。

➁$-3×(-2^2)$を計算しなさい。

③$\frac{2a+b}{ 3 }+\frac{a-b}{ 2 }$を計算しなさい。

④$xy^2×x^2÷xy$を計算しなさい。

⑤$\frac{6}{\sqrt{3}}+\sqrt{15}×\sqrt{5}$を計算しなさい。

⑥2次方程式$x^2+7x-18=0$ を解きなさい。

⑦$a=\sqrt{5}+3$のとき、$a^2-6a+9$の値を求めなさい。

⑧500円、100円、50円の硬貨が1枚ずつある。
この3枚を同時に1回投げるとき、表が出た硬貨の合計金額が500円以下になる確率を求めなさい。
ただし3枚の硬貨のそれぞれについて、表と裏の出方は同様に確からしいとする。

⑨右の図は底面の半径が$3cm$、側面になるおうぎ形の半径が$5cm$の円錐の展開図である。
これを組み立ててできる円錐の体積を求めなさい。
この動画を見る 
PAGE TOP