【高校受験対策】数学-確率5 - 質問解決D.B.(データベース)

【高校受験対策】数学-確率5

問題文全文(内容文):
◎右の図のような、1辺が2の正方形$ABCD$があり、頂点$D$に点$P$、頂点$A$に
点$Q$がある。
赤と白の2個のさいころを同時に1回投げて、
赤いさいころの出た目の数だけ$P$を左回りに頂点から頂点へ移動させ、
白いさいころの出た目の数だけ$Q$を左回りに頂点から頂点へ移動させる。
たとえば、赤いさいころの出た目が1、白いさいころの出た目が2のときは、
$P$を$D→A$、$Q$を$A→B→C$と移動させる。
このとき、次の問に答えなさい。

①赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の位置が頂点$B$で、$Q$の位置が頂点$D$になる確率を求めなさい。

②赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$△APQ$の面積が2になる確率を求めなさい。

③表1のように、各頂点の点数を決め、$P、Q$の移動後の位置に応じてそれぞれ点数を与える。
赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の点数が$Q$の点数より高くなる確率を求めなさい。

図は動画内参照
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図のような、1辺が2の正方形$ABCD$があり、頂点$D$に点$P$、頂点$A$に
点$Q$がある。
赤と白の2個のさいころを同時に1回投げて、
赤いさいころの出た目の数だけ$P$を左回りに頂点から頂点へ移動させ、
白いさいころの出た目の数だけ$Q$を左回りに頂点から頂点へ移動させる。
たとえば、赤いさいころの出た目が1、白いさいころの出た目が2のときは、
$P$を$D→A$、$Q$を$A→B→C$と移動させる。
このとき、次の問に答えなさい。

①赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の位置が頂点$B$で、$Q$の位置が頂点$D$になる確率を求めなさい。

②赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$△APQ$の面積が2になる確率を求めなさい。

③表1のように、各頂点の点数を決め、$P、Q$の移動後の位置に応じてそれぞれ点数を与える。
赤と白の2個のさいころを同時に1回投げて、$P、Q$を移動させるとき、
$P$の点数が$Q$の点数より高くなる確率を求めなさい。

図は動画内参照
投稿日:2018.01.04

<関連動画>

3通りで解説!! 智辯和歌山(改)

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
BE=?
*図は動画内参照

智辯学園和歌山高等学校
この動画を見る 

高校入試の早解きルートを30秒でモノにするショート~全国入試問題解法 #Shorts #数学 #高校入試

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
xの変域が$ o\leqq x \leqq 6 $のとき,yの変域が等しく,この関数のグラフは1点で交わる.
この交点を反比例$ y=\dfrac{c}{x}$のグラフが通るとき,$ c $の値を求めよ.

和洋国府台女子高校過去問
この動画を見る 

いろいろな四角形 暁

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。

暁高等学校
この動画を見る 

【数学】中2-53 角度チャレンジ Lv.1

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさをもとめよう!
※図は動画内参照
この動画を見る 

【理解深まる3分間】連立方程式:青森県高等学校~全国入試問題解法【トライ式】

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#青森県公立高等学校#青森県高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 青森県の高等学校

グラフを利用して解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
y = x+6 \\
x + 2y = 6
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP