問題文全文(内容文):
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。
出典:数学ゴールデン 数学オリンピック
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。
出典:数学ゴールデン 数学オリンピック
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。
出典:数学ゴールデン 数学オリンピック
$0 \lt x$:実数
$x+\sqrt{ x(x+1) }+\sqrt{ x(x+2) }+\sqrt{ (x+1)(x+2) }=2$を解け。
出典:数学ゴールデン 数学オリンピック
投稿日:2022.01.15