【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。 - 質問解決D.B.(データベース)

【数C】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:13 問題解説
2:34 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
投稿日:2020.10.21

<関連動画>

平面ベクトルと空間ベクトル

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
平面ベクトルと空間ベクトルの解説動画です
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$正四面体$OABC$の辺$BC$の中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
$\overrightarrow{ OP }=\frac{\boxed{\ \ ア\ \ }\ \overrightarrow{ OA }+\boxed{\ \ イ\ \ }\ \overrightarrow{ OB }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ OC }}{\boxed{\ \ エ\ \ }}$
である。
次に、点Qは平面OAB上の点で$|\overrightarrow{ MQ }|+|\overrightarrow{ QN }|$が最小になる点とする。
このとき、
$\overrightarrow{ OQ }=\frac{\boxed{\ \ オ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ カ\ \ }\ \overrightarrow{ OB }}{\boxed{\ \ キ\ \ }}$
である。

2022早稲田大学人間科学部過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#センター試験#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
点$O$を原点とする座標空間に2点
$A(3, 3, -6),$ $B(2+2\sqrt3,$ $2-2\sqrt3, -4)$
をとる。3点$O,A,B$の定める平面を$\alpha$とする。また、$\alpha$に含まれる点$C$は

$\overrightarrow{ OA } \bot \overrightarrow{ OC },$ $\overrightarrow{ OB }・\overrightarrow{ OC }=24$ $\cdots$①

を満たすとする。

(1) $|\overrightarrow{ OA }|=\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }},$ $|\overrightarrow{ OB }|=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$であり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=\boxed{\ \ オカ\ \ }$である。

(2)点$C$は平面$\alpha$上にあるので、実数$s,$ $t$を用いて、$\overrightarrow{ OC }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$と
表すことができる。このとき、①から$s=\displaystyle \frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $t=\boxed{\ \ コ\ \ }$である。
したがって、$|\overrightarrow{ OC }|=\boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}$である。

(3)$\overrightarrow{ CB }=\left(\boxed{\ \ ス\ \ }, \boxed{\ \ セ\ \ }, \boxed{\ \ ソタ\ \ }\right)$である。したがって、平面$\alpha$上の
四角形$OABC$は$\boxed{\ \ チ\ \ }$。
$\boxed{\ \ チ\ \ }$に当てはまるものを、次の⓪~④のうちから一つ選べ。
ただし、少なくとも一組の対辺が平行な四角形を台形という。

⓪正方形である
①正方形ではないが、長方形である
②長方形ではないが、平行四辺形である
③平行四辺形ではないが、台形である
④台形ではない

$\overrightarrow{ OA } \bot \overrightarrow{ OC }$であるので、四角形$OABC$の面積は$\boxed{\ \ ツテ\ \ }$である。

(4)$\overrightarrow{ OA } \bot \overrightarrow{ OD },$ $\overrightarrow{ OC }・\overrightarrow{ OD }=2\sqrt6$かつ$z$座標が1であるような点$D$の座標は
$\left(\boxed{\ \ ト\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}, \boxed{\ \ ヌ\ \ }+\displaystyle \frac{\sqrt{\boxed{\ \ ネ\ \ }}}{\boxed{\ \ ノ\ \ }}, 1\right)$
である。このとき$\angle COD=\boxed{\ \ ハヒ\ \ }°$である。
3点$O,C,D$の定める平面を$\beta$とする。$\alpha$と$\beta$は垂直であるので、三角形
$ABC$を底面とする四面体$DABC$の高さは$\sqrt{\boxed{\ \ フ\ \ }}$である。したがって、
四面体$DABC$の体積は$\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$ である。

2020センター試験過去問
この動画を見る 

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP