#福島大学(2022) #定積分 #Shorts - 質問解決D.B.(データベース)

#福島大学(2022) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{3} 2x\sqrt{ 4-x }\ dx$

出典:2022年福島大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} 2x\sqrt{ 4-x }\ dx$

出典:2022年福島大学
投稿日:2024.04.06

<関連動画>

#岩手大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} \displaystyle \frac{x}{(4-x)^3} dx$

出典:2019年岩手大学
この動画を見る 

福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$\triangle OAB$は鋭角三角形であり、

$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$

を満たしている。

$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。

(1)$k$のとり得る値の範囲を求めよ。

上で与えた$\triangle OAB$の頂点$A,B$から

それぞれの対辺に下ろした$2$本の垂線の交点

を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。

(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。

(3)$3$点$O,H,C$が同一直線上にあるとき、

$k$の値と$\dfrac{OH}{OC}$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART2〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

【良問】整数問題の重要なポイントが詰まりまくった問題【数学 大学入試】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)整数$m$に対して、$m^2$を4で割った余りは0または1であることを示せ。
(2)自然数$n,k$が$25×3^n=k^2+176$・・・・・・(①)を満たすとき、$n$は偶数であることを示せ。
(3)(2)の関係式(①)を満たす自然数の組($n,k$)をすべて求めよ。

数学入試問題過去問
この動画を見る 

大学入試問題#221 横浜国立大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\cos(x^2)dx$を計算せよ

出典:2015年横浜国立大学 入試問題
この動画を見る 
PAGE TOP