福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
投稿日:2023.08.17

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田の数学〜立方体の平面による切断を考えよう〜慶應義塾大学2023年経済学部第5問〜立方体の平面による切断と体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。\\
また、x座標が正の点Cを、\overrightarrow{ OC }を\overrightarrow{ OA }と\overrightarrow{ OB }に垂直で、|\overrightarrow{ OC }|=8\sqrt3となるように定める。\\
(1)\triangle OABの面積は\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}\ である。\\
(2)点Cの座標は(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })である。\\
(3)四面体OABCの体積は\boxed{\ \ キク\ \ }\ である。\\
(4)平面ABCの方程式は\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0である。\\
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は\\
(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})\\
である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。\\
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。\\
(\textrm{a})\angle BAC \lt \angle ABCを満たす場合、点Cは第\boxed{\ \ ア \ \ }象限に存在する。\\
(\textrm{b})\angle ABC \lt \angle ACBを満たす場合、点Cは\boxed{\ \ イ \ \ }の\boxed{\ \ ウ \ \ }に存在する。\\
(\textrm{c})\angle ACB \lt \frac{\pi}{2}を満たす場合、点Cは\boxed{\ \ エ \ \ }の\boxed{\ \ オ \ \ }に存在する。\\
(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}を満たす点Cが存在する領域(境界を含む)\\
の面積は\frac{\boxed{\ \ カ \ \ }}{\boxed{\ \ キク \ \ }}\pi-\frac{\sqrt{\boxed{\ \ ケ \ \ }}}{\boxed{\ \ コ \ \ }}である。\\
\\
\\
\boxed{\ \ イ \ \ },\boxed{\ \ エ \ \ }の解答群\\
①点Aを中心とし点Bを通る円\\
②点Bを中心とし点Aを通る円\\
③線分ABを直径とする円\\
④離心率が0.5で2点O,Aを焦点とする楕円\\
⑤離心率が0.5で2点O,Bを焦点とする楕円\\
⑥離心率が0.5で2点A,Bを焦点とする楕円\\
⑦線分ABを一辺にもち、重心のy座標が正である正三角形\\
⑧線分ABを一辺にもち、重心のy座標が正である正方形\\
\\
\\
\boxed{\ \ ウ \ \ },\boxed{\ \ オ \ \ }の解答群\\
①内部\ \ \ ②周上\ \ \ ③外部\ \ \ ④重心\\
\\
\\
(2)座標空間内の4点A(-1,0,0),B(1,0,0),C(s,t,0),Dを原点とし、\\
\angle BAC \lt \angle ABC \lt \angle ACB\\
を満たす四面体を考える。t \gt 0であり、点Dのz座標は正であるとする。\\
(\textrm{a})\angle ADC=\frac{\pi}{2}を満たす場合、点Dは\boxed{\ \ サ \ \ }に存在する。\\
(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}を満たす場合、\\
点Dのx座標はsであり、点Dは(s,\boxed{\ \ シ \ \ },0)を中心とする\\
半径\boxed{\ \ ス \ \ }の円周上にある。\\
(\textrm{c})以下ではt=\frac{4}{3}とする。設問(1)の結果から、点Cのx座標sは\\
\boxed{\ \ セ \ \ } \lt s \lt -\boxed{\ \ ソ \ \ }+\frac{\boxed{\ \ タ \ \ }\sqrt{\boxed{\ \ チ \ \ }}}{\boxed{\ \ ツ \ \ }}の範囲をとりうる。この範囲でsが変化\\
するとき、\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}を満たす四面体ABCDの体積は\\
s=\frac{\boxed{\ \ テ \ \ }}{\boxed{\ \ ト \ \ }}のとき最大値\frac{\boxed{\ \ ナ \ \ }}{\boxed{\ \ 二ヌ \ \ }}をとる。
\end{eqnarray}

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP