【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0 - 質問解決D.B.(データベース)

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説
4:34 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
投稿日:2020.07.02

<関連動画>

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形OAB
|OA|=3, |AB|=5, OA.AB=10
を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。

1.辺OBの長さを求めよ。
2.OIOAOBを用いて表せ。
3.HIOAOBを用いて表せ。

出典:2024年北海道大学
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 P(0,0,1), Q(0,1,2), R(1,0,2)を頂点とする三角形の面積は    である。
aを実数とし、v=(a,a,3)とする。点P',Q',R'を
OP=OP+v, OQ=OQ+v, OR=
OR+v
によって定め、さらに線分PP,QQ,RRxy平面と交わる点をP,Q,Rとする。
このとき、Pの座標は    Qの座標は    Rの座標は    である。
PQRが正三角形になるのはa=    のときである。
3点P,Q,Rが同一直線上にあるのはa=    のときである。a>    のとき、
PQRの面積をaで表すと    となる。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

【数B】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 

これ知ってる?

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
全方向美少女が全方向でない事に関して解説します。
この動画を見る 

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 
PAGE TOP preload imagepreload image