【3分で学ぶ基礎力!】文字式:法政大学高等学校~全国入試問題解法【タイガー】 - 質問解決D.B.(データベース)

【3分で学ぶ基礎力!】文字式:法政大学高等学校~全国入試問題解法【タイガー】

問題文全文(内容文):
入試問題 法政大学高等学校

次の問いの計算をしなさい。
$\displaystyle \frac{5x-2y}{3}-\displaystyle \frac{2x-3y}{2}-\displaystyle \frac{3x+2y}{5}$
単元: #数学(中学生)#文字と式#高校入試過去問(数学)#法政大学高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学高等学校

次の問いの計算をしなさい。
$\displaystyle \frac{5x-2y}{3}-\displaystyle \frac{2x-3y}{2}-\displaystyle \frac{3x+2y}{5}$
投稿日:2021.06.24

<関連動画>

高校入試の文字式の問題を15秒で解説~全国入試問題解法 #shorts #数学 #高校受験 #動体視力 #sound

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\color{red}{ x=4-\sqrt{2022}}$のとき,
$\color{orange}{x^2-8x+15}$の値を求めよ.

関西大倉高校過去問
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【中1 数学】  1-①⑦ 文字の計算(加法・減法)

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 文字の計算(加法・減法)
左の式から右の式を~
(例)$5x-3$ 、 $2x+7$
足すと…
$5x-3+2x+7$
引くと…
$5x-3-(2x+7)$

次の計算をせよ
① $-5x+2x=$
② $-5a-3a=$
③ $x-\dfrac{1}{3}x=$
④ $5x-2+3x=$
⑤ $-7x-x+2y+3y=$
⑥ $+9x-5x^2-3x=$

この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

アイキャッチ画像
単元: #中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

【高校受験対策/数学】死守77

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77

①$-3+(-2)$を計算しなさい。

➁$8-4÷(-2)^2$を計算しなさい。

③$5×(-5a)$を計算しなさい。

④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。

⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。

⑥$(2a-b)^2$を展開しなさい。

⑦$x^2-x-42$を因数分解しなさい。

⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。

⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。

ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る 
PAGE TOP