高校入試から整数を一瞬で解説する動画~全国入試問題解法 #shorts #math #数学 #動体視力 - 質問解決D.B.(データベース)

高校入試から整数を一瞬で解説する動画~全国入試問題解法 #shorts #math #数学 #動体視力

問題文全文(内容文):
19で割るとn余る自然数がある.
この自然数を「11倍して1加えた数」も19で割るとn余る文中の自然数をAとする.
nはいくつであるか.

大阪星光高校過去問
単元: #数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
19で割るとn余る自然数がある.
この自然数を「11倍して1加えた数」も19で割るとn余る文中の自然数をAとする.
nはいくつであるか.

大阪星光高校過去問
投稿日:2023.06.25

<関連動画>

千葉大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
30!について
(1)$2^k$で割ったとき商が整数となる最大のkの値
(2)末尾に0がいくつ並ぶか
(3)1の位から左に見ていき最初にあらわれる0以外の数は何か
この動画を見る 

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

慶應義塾大(薬)n進法の基本

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{210210210・・・・・・210_{(3)} }^{3n桁}$
$3$進法で表記された$210$を繰り返す$3n$桁の数を$十$進法にして$n$の式で表せ.

2021慶應(薬)過去問
この動画を見る 

【数A】【整数の性質】合同式 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)$37^{100}$を6で割った余り
(2$)5^{80}$を8で割った余り
(3)$3^{100}$を13で割った余り
(4)$4^{200}$を9で割った余り

nを整数とする。合同式を用いて、次のものを求めよ。
(1)nを8で割った余りが3であるとき、n²+2n+5を8で割った余り
(2)nを17で割った余りが15であるとき、3n²+5n+9を17で割った余り
(3)nを35で割った余りが2であるとき、n⁴+3n³+4を35で割った余り
(4)nを41で割った余りが38であるとき、n³+7n²+8を41で割った余り

合同式を用いて、次のものを求めよ。
(1)$123^{122}$の一の位
(2)$7^{251}$の下2桁
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(2)〜三角形の内接円の半径と不定方程式

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?

2023早稲田大学商学部過去問
この動画を見る 
PAGE TOP