問題文全文(内容文):
4,
2025は9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0です。4桁の整数のよくうち、9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0であるものは2025を含
めて全部で▭個あります。
5,
A駅ではB駅行き、C駅行き、D駅行きの3種類の電車が、それぞれ一定の間隔で発車します。 ある日、3種類の最初の電車が同時に発車し、3種類の最後の電車も同時に発車し、B駅行きは69本 C駅行きは71本、D駅行きは41本発車しました。この日、3種類の電車が同時に発車したのは最初と最後を含めて全部で ① 回で、3種類のうち2種類の電車のみが同時に発車したのは全部で② 回でした。
6,
右の図(動画内参照)は、1×1から9×9の81個の数を表にしたものです。太線の長方形の中に書かれたすべての数のけいせん和は315です。この表の罫線で囲まれた長方形は全部で 2025個ありますが、そのうち、中に書かれたすべての数の和が315であるものは、太線の長方形を含めて全部個あります。ただし、正方形は長方形にで含まれるとします。
4,
2025は9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0です。4桁の整数のよくうち、9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0であるものは2025を含
めて全部で▭個あります。
5,
A駅ではB駅行き、C駅行き、D駅行きの3種類の電車が、それぞれ一定の間隔で発車します。 ある日、3種類の最初の電車が同時に発車し、3種類の最後の電車も同時に発車し、B駅行きは69本 C駅行きは71本、D駅行きは41本発車しました。この日、3種類の電車が同時に発車したのは最初と最後を含めて全部で ① 回で、3種類のうち2種類の電車のみが同時に発車したのは全部で② 回でした。
6,
右の図(動画内参照)は、1×1から9×9の81個の数を表にしたものです。太線の長方形の中に書かれたすべての数のけいせん和は315です。この表の罫線で囲まれた長方形は全部で 2025個ありますが、そのうち、中に書かれたすべての数の和が315であるものは、太線の長方形を含めて全部個あります。ただし、正方形は長方形にで含まれるとします。
単元:
#算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#過去問解説(学校別)#灘中学校
指導講師:
重吉
問題文全文(内容文):
4,
2025は9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0です。4桁の整数のよくうち、9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0であるものは2025を含
めて全部で▭個あります。
5,
A駅ではB駅行き、C駅行き、D駅行きの3種類の電車が、それぞれ一定の間隔で発車します。 ある日、3種類の最初の電車が同時に発車し、3種類の最後の電車も同時に発車し、B駅行きは69本 C駅行きは71本、D駅行きは41本発車しました。この日、3種類の電車が同時に発車したのは最初と最後を含めて全部で ① 回で、3種類のうち2種類の電車のみが同時に発車したのは全部で② 回でした。
6,
右の図(動画内参照)は、1×1から9×9の81個の数を表にしたものです。太線の長方形の中に書かれたすべての数のけいせん和は315です。この表の罫線で囲まれた長方形は全部で 2025個ありますが、そのうち、中に書かれたすべての数の和が315であるものは、太線の長方形を含めて全部個あります。ただし、正方形は長方形にで含まれるとします。
4,
2025は9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0です。4桁の整数のよくうち、9の倍数でも25の倍数でもあり、4つの位の数のうち1つだけが0であるものは2025を含
めて全部で▭個あります。
5,
A駅ではB駅行き、C駅行き、D駅行きの3種類の電車が、それぞれ一定の間隔で発車します。 ある日、3種類の最初の電車が同時に発車し、3種類の最後の電車も同時に発車し、B駅行きは69本 C駅行きは71本、D駅行きは41本発車しました。この日、3種類の電車が同時に発車したのは最初と最後を含めて全部で ① 回で、3種類のうち2種類の電車のみが同時に発車したのは全部で② 回でした。
6,
右の図(動画内参照)は、1×1から9×9の81個の数を表にしたものです。太線の長方形の中に書かれたすべての数のけいせん和は315です。この表の罫線で囲まれた長方形は全部で 2025個ありますが、そのうち、中に書かれたすべての数の和が315であるものは、太線の長方形を含めて全部個あります。ただし、正方形は長方形にで含まれるとします。
投稿日:2025.01.23





