【数学】中2-84 確率チャレンジ Lv.6(カード編) - 質問解決D.B.(データベース)

【数学】中2-84 確率チャレンジ Lv.6(カード編)

問題文全文(内容文):
①の空欄を埋め、②~⑤の確率を求めよ。
カードの中に①____があったら
樹形図注意報です!!

$\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードを続けて2枚ひき、左から並べ、2けたの整数をつくる!

② 2けたの整数は 全部で何通り?

③ この整数が3の倍数になる確率は?

◎ $\boxed{ 0 },\boxed{ 1 },\boxed{ 3 },\boxed{ 6 }$のカードを続けて3枚ひき、左から並べて、3けたの整数をつくる!

④この整数が偶数になる確率は?
⑤この整数が4でわり切れる確率は?
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①の空欄を埋め、②~⑤の確率を求めよ。
カードの中に①____があったら
樹形図注意報です!!

$\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードを続けて2枚ひき、左から並べ、2けたの整数をつくる!

② 2けたの整数は 全部で何通り?

③ この整数が3の倍数になる確率は?

◎ $\boxed{ 0 },\boxed{ 1 },\boxed{ 3 },\boxed{ 6 }$のカードを続けて3枚ひき、左から並べて、3けたの整数をつくる!

④この整数が偶数になる確率は?
⑤この整数が4でわり切れる確率は?
投稿日:2013.02.17

<関連動画>

【5分で理解!「それ以外」が難しい!】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 早稲田大学系属早稲田実業学校高等部

$\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)^2+x^2+y^2+(x-y)^2 = 2019 \\
(x + y)(x-y) = 385
\end{array}
\right.
\end{eqnarray}$

$x \gt 0,y \gt 0$のとき、
連立方程式を解け。
この動画を見る 

【受験対策】数学-証明3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平行と合同#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,$\triangle ABC$の辺$BC$上に点$D$がある.
3点$A,B,D$を通る円と,辺$AC$との交点を$E$とするとき,
次の各問いに答えなさい.

①$\angle AEB=47°$のとき,$\angle ADC$の大きさを求めなさい.

②$AE=BD$のとき,$\triangle ACD\equiv \triangle BCE$を証明しなさい.

図は動画内参照
この動画を見る 

【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.

西大和学園高校過去問
この動画を見る 

【テスト対策・中2】3章-5

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、2点$A(-3,0)、C\left(0,\dfrac{15}{4}\right)$を通る直線$\ell$と
点$B$を通る直線$m:y = - x + 6$がある。
直線$\ell.m$の交点を$P$とするとき、次の問いに答えなさい。

①直線$\ell$の式を求めよ。

②点$P$の座標を求めよ。

③$△PAB$の面積を求めよ。

④点$P$を通り、$△PAB$の面積を2等分する直線の式を求めよ。

図は動画内参照
この動画を見る 

【受験対策】数学-証明2

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,$\triangle ABC$は$AB=AC$の二等辺三角形,
$\triangle ACD$は$AC=AD$の二等辺三角形で,
頂点$D$から辺$CB$に平行な直線をひき,
辺$AB$との交点を$E$とする.
$AB=DE$のとき,次の各問いに答えなさい.

①$\triangle ABC$と$\triangle DEA$が合同であることを証明しなさい.

②$BD$と$AC$との交点を$F$とする.
$BC=BF$のとき,$\angle BAD$の大きさを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP