【高校数学】 数B-37 2点間の距離② - 質問解決D.B.(データベース)

【高校数学】 数B-37 2点間の距離②

問題文全文(内容文):
①2点A(1.2.-3)、B(3.-1.-4)から等距離にあるx軸上の点Pを求めよう。

②A(0.1.-2)、B(2.3.-2)、C(0.3.0)、Dを頂点とする正四面体ABCDの頂点Dの座標を求めよう。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2点A(1.2.-3)、B(3.-1.-4)から等距離にあるx軸上の点Pを求めよう。

②A(0.1.-2)、B(2.3.-2)、C(0.3.0)、Dを頂点とする正四面体ABCDの頂点Dの座標を求めよう。
投稿日:2015.12.30

<関連動画>

【数C】【空間ベクトル】四面体において、△ABC、△ACD,△ADB,△BCDの重心をそれぞれG,H,I,Jとする。4つの線分DG,BH,CI,AJをそれぞれ3:1に内分する点は一致することを証明せよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A,B,C,Dを頂点とする四面体において、△ABC、△ACD,△ADB,△BCDの重心をそれぞれG,H,I,Jとする。このとき、4つの線分DG,BH,CI,AJをそれぞれ3:1に内分する点は一致することを証明せよ。
この動画を見る 

平面ベクトルと空間ベクトル

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
平面ベクトルと空間ベクトルの解説動画です
この動画を見る 

【数C】【空間ベクトル】定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
定点A(0,0,2),B(1,2,1)とxy平面に同点Pがある。このとき、AP+BPの最小値を求めよ。
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。

2023杏林大学過去問
この動画を見る 
PAGE TOP