【数Ⅲ】【微分】 f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0 のとき次を示せ。 (1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1 - 質問解決D.B.(データベース)

【数Ⅲ】【微分】 f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0 のとき次を示せ。 (1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1

問題文全文(内容文):
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
チャプター:

00:00 スタート(1)解説
01:26 (2)解説
03:03 (3)解説

単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
微分可能な関数f(x)とすべての実数x,yについて次の等式が成り立っている。
f(x+y)=f(x)f(y)-sinxsiny,f'(0)=0
このとき、次のことが成り立つことを示せ。
(1)f(0)=1 (2)f'(x)=-sinx (3)-1≦f(x+1)-f(x)≦1
投稿日:2025.12.18

<関連動画>

福田の数学〜早稲田大学2024年理工学部第5問〜媒介変数表示のグラフと回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t    \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
この動画を見る 

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
この動画を見る 

二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る 

【数Ⅲ-160】定積分で表された関数③(極値編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。

①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$

➁$f(x)=\int_0^x (1-t^2)e^tdt$
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る 
PAGE TOP