中2数学「三角形の合同証明①」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「三角形の合同証明①」【毎日配信】

問題文全文(内容文):
中2~三角形の合同証明①~

例1 右の図で、AB=CB、AD=CDならば△ABD=△CBDであることを証明しなさい。

例2 右の図で、OA=OB, AD//CBならば、△AOD≡△BOCであることを証明 しなさい。

※図は動画内参照
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~三角形の合同証明①~

例1 右の図で、AB=CB、AD=CDならば△ABD=△CBDであることを証明しなさい。

例2 右の図で、OA=OB, AD//CBならば、△AOD≡△BOCであることを証明 しなさい。

※図は動画内参照
投稿日:2022.09.16

<関連動画>

【数学】中2-29 変化の割合

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
一次関数といえば...
y=①____
変化の割合は②____のところのことで、その公式は、
変化の割合=③________

$y=-3x+9$の変化の割合は④____で、それが⑤____だから、xの値が増加すると、yの値は⑥____するんだ。

◎$y=-4x-3$について・・・
⑦変化の割合は?
⑧xの増加量が3のとき、yの増加量は?
⑨yの増加量が-2のとき、xの増加量は?

◎ある一次関数(下の表)について・・・
⑩変化の割合は?
⑪yの増加量が-15のとき、xの増加量は?
※表は動画内参照
この動画を見る 

【中学数学】多項式の乗法除法の問題演習~計算ミスしない方法~ 1-4【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, 5(x+3y)
$
$\displaystyle
(2)\, -3a(b+4c)
$
$\displaystyle
(3)\, 2(2x-y)+3(x+4y)
$
$\displaystyle
(4)\, 9x+6y-4(x-2y)
$
$\displaystyle
(5)\, (12x+4y)\div 4
$
$\displaystyle
(6)\, (15a+2b)\div 3
$
$\displaystyle
(7)\, \frac{1}{4}(x+2)+\frac{1}{8}(5x-4)
$
$\displaystyle
(8)\, 12ab\div (-4b)
$
$\displaystyle
(9)\, 6ab\div 3b \times 2a
$
$\displaystyle
(10)\, (7x^2y+21xy^2+28)\div \frac{14}{3}
$
この動画を見る 

中2数学「連立方程式の文章題⑥(池の周りの速さ)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題⑥~ (池の周りの速さ)

例題
1周2kmの池の周りを兄と弟が同じ位置から同時に 出発します。
反対方向に進むと、出発してから5分後に 2人は、初めて出会います。
また、 同じ方向に進むと 出発してから20分後に兄は、弟を追いこします。兄と弟の速さは、それぞれ分速何mですか。
この動画を見る 

中2数学「三角形の合同条件」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~三角形の合同条件~

例1 次の図で、合同な三角形の組を見つけ、記号≡を使って表しなさい。また、そのときに使った合同条件を答えなさい。

例2 次の図で、合同な三角形の組を見つけ、記号≡を使って表しなさい。また、そのときに使った合同条件を答えなさい。

※図は動画内参照
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 
PAGE TOP