早稲田大 指数 関数最小値 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田大 指数 関数最小値 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=8^x+8^{-x}-4(4^x+4^{-x})$の最小値とそのときの$x$

出典:2009年早稲田大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x+8^{-x}-4(4^x+4^{-x})$の最小値とそのときの$x$

出典:2009年早稲田大学 過去問
投稿日:2019.05.02

<関連動画>

中学生向け指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを求めよ.
$10^{2n}-10^{n+2}+999=\overbrace{ 999\cdots +9}^{n+1桁}$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

福田のおもしろ数学141〜指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の式を満たす$x$を求めよ。
$40^{x-1}$=$2^{2x+1}$
この動画を見る 

秋田大(理)超基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\leqq 2において,y=2^{2n+2}-2^{x+2}$の最大値と最小値を求めよ.

秋田大(理)過去問
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&解け\\
&&x>0\\
&&2x^{2x}=1

\end{eqnarray}
$
この動画を見る 
PAGE TOP