数学「大学入試良問集」【9−2 常用対数と最高位の数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【9−2 常用対数と最高位の数】を宇宙一わかりやすく

問題文全文(内容文):
$6^n$が$39$桁の自然数になるときの自然数$n$を求めよ。
その場合の$n$に対する$6^n$の最高位の数字を求めよ。
ただし、$log_{10}2=0.3010,log_{10}3=0.4771$とする。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$6^n$が$39$桁の自然数になるときの自然数$n$を求めよ。
その場合の$n$に対する$6^n$の最高位の数字を求めよ。
ただし、$log_{10}2=0.3010,log_{10}3=0.4771$とする。
投稿日:2021.05.12

<関連動画>

福田の数学〜東京理科大学2023年創域理工学部第3問〜対数関数と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上で、曲線$y$=$\sqrt 5\log x$ ($x$>0)を$C$とし、$C$上の点A($a$, $\sqrt 5\log a$) ($a$>0)をとる。ただし、$\log$は自然対数とする。点Aにおける$C$の接線を$l$とし、$l$と$y$軸の交点をQ(0,$q$)とする。また、点Aにおける$C$の法線を$m$とし、$m$と$y$軸の交点をR(0,$r$)とする。
(1)$q$を、$a$を用いて表せ。
(2)$r$を、$a$を用いて表せ。
(3)線分QRの長さが$3\sqrt 5$となるような$a$の値を求めよ。
(4)$\angle$ARQ=$\frac{\pi}{6}$となるような$a$の値を求めよ。
(5)$a$=$e^2$とする。このとき、$x$軸、曲線$C$および直線$l$で囲まれた部分の面積を求めよ。ただし、$e$は自然対数の底である。
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
(1) $2\log_{0.1}{(x-1)} < \log_{0.1}{(7-x)}$
(2) $\log_{10}{(x-3)} + \log_{10}{x} \leq 1$
(3) $\log_{2}{(1-x)} + \log_{2}{(3-x)} < 1 + \log_{2}{3}$

次の方程式を解け。
(1) $2^x = 3^{2x-1}$
(2) $5^{2x} = 3^{x+2}$

次の方程式、不等式を解け。
(1) $(\log_{3}{x})^2 - \log_{2}{x^4} + 3 = 0$
(2) $(\log_{\frac{1}{2}}{x})^2 - \log_{\frac{1}{4}}x = 0$
(3) $(\log_{3}{x})^2 - \log_{9}{x} - 2 \leq 0$
(4) $(\log_{\frac{1}{3}}{x})^2 + \log_{\frac{1}{3}}{x^2} - 15 > 0$

次のxについての不等式を解け。
ただし、$a$ は 1 と異なる正の定数とする。
(1) $\log_{a}{(x+3)} < \log_{a}{(2x+2)}$
(2) $\log_{a}{(x^2 - 3x - 10)} \geq \log_{a}{(2x - 4)}$
この動画を見る 

大分大 ざ・見掛け倒しの問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\log_{10}\left(1+\dfrac{3}{n}\right)$
$10^{\displaystyle \sum_{k=1}^n a_k}$を$n$の式で表せ.

2021大分大過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 
PAGE TOP