【高校受験対策】数学-図形29(番号間違えました) - 質問解決D.B.(データベース)

【高校受験対策】数学-図形29(番号間違えました)

問題文全文(内容文):
高校受験対策・図形28

Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。

①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。

②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形28

Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。

①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。

②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
投稿日:2019.11.30

<関連動画>

【スッキリするには…!】文字式:江戸川学園取手高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#江戸川学園取手高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ A=x^2+x+1 $
$ B=x^2-x-1 $
$ C=x^3-1 $ のとき,$ 2A-{A-(2B-C)}-(B-C)$を計算しなさい.

江戸川取手高校過去問
この動画を見る 

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

【見た目に惑わされないで…】二次方程式:桐朋高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$\dfrac{x^2}{6}-\dfrac{x+5}{3}+\dfrac{1}{2}=0$を解け.

桐朋高等学校過去問
この動画を見る 

【中学数学】合同の証明の演習~北海道公立高校入試標準2019~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#北海道公立高校入試
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図のように、AB=AD、AD//BC、$\angle$ABCが鋭角である台形がある。
対角線BD上に点Eを、$\angle$BAE=90°となるようにとる。

1⃣
$\angle$ADB=20°、$\angle$BCD=100°のとき、$\angle$BDCの大きさを求めよ。

2⃣
頂点Aから辺BCに垂線をひき、対角線BD、辺BCとの交点をそれぞれF,Gとする。
このとき、$\triangle$ABF$\equiv$ADEを証明せよ。
この動画を見る 

入試予想問題:山形県立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#山形県立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題 山形県立高等学校

・大問4題(総合問題)(小問集合)
・記述問題がポイント。 途中式,証明,作図。
・分量多い!!
【予想問題】
・$8a \div (-4a^2ℓ) \times aℓ^2$
・$4\sqrt{ 3 } \div \sqrt{ 2 }+\sqrt{ 54 }$
・$2x^2+4x-7=x^2-2$
・3枚の硬貨を同時に投げるとき、少なくとも1枚は表が 出る確率?
・$y=-\displaystyle \frac{12}{x}$・・・・①

(1)関数①について、 $x$の値を4倍にすると$y$の値は何倍になるか。
(2)①上の点$A$と$y$軸上の点$B$を通る直線②があり、2点$A,B$の$y$座標はそれぞれ2、-3である。
直線②の式を求めよ。
※図は動画内参照

線分$AB$を直径とする円○。 円○の周上に点$C$
$BC \lt AC$である$\triangle ABC$. $\triangle ACD$が
$AC=AD$の直角二等辺$\triangle $となる$D$.
辺$CD$と直径$AB$の交点$E$。
$D$から$AB$に垂線→交点$F$

(1) $\triangle ABC ∞ \triangle DAF$の証明。
(2) $AB=10cm, BC= 6cm, CA=8cm$ 線分施の長さを求めよ。
※図は動画内参照
この動画を見る 
PAGE TOP