#福島大学2023#定積分_33 - 質問解決D.B.(データベース)

#福島大学2023#定積分_33

問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$

出典:2023年福島大学
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$

出典:2023年福島大学
投稿日:2024.09.03

<関連動画>

大学入試問題#823「置換するかどうか」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (x+1)^2e-(x+1) dx$

出典:2019年筑波大学
この動画を見る 

【数Ⅲ】【積分とその応用】定積分置換積分、部分積分 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次を求めよ
(1) $\displaystyle \int_0^1 \sqrt{e^{1-t}}~dt$
(2) $\displaystyle \int_0^{\frac{\pi}2}\frac{\cos{2\theta}}{\sin \theta+\cos\theta}~d\theta$
(3) $\displaystyle\int_0^\pi \sin^4x~dx$
(4) $\displaystyle \int_1^2 \frac{\sqrt{x^2-4x+4}}{x}~dx$

次を求めよ
(1) $\displaystyle \int_0^\pi |\cos2\theta|~d\theta$
(2) $\displaystyle \int_0^\pi|\sin x+\cos x|~dx$


$m,n$は正の整数とする。次の定積分を求めよ。
(1) $\displaystyle \int_0^\pi \cos mx\cos nx~dx$
(2) $\displaystyle \int_0^\pi \sin mx\sin nx~dx$
(3) $\displaystyle \int_0^\pi \sin mx\cos nx~dx$


定積分$\displaystyle \int_0^\pi (1-a\sin x-b\sin2x)^2~dx$を最小にする定数$a,b$の値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024総合政策学部第2問〜定積分で表された関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
負でない実数 $t$ に対して定義される関数 $\displaystyle\frac{9}{2}t-3\int^{1}_{0}|(x-t)(x-2t)|dx$ の最大値と、そのときの $t$ の値は?
この動画を見る 

福田の数学〜九州大学2022年文系第4問〜定義に従って定積分の性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
$f(x)$を整式とする。$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$#\int_a^bf(x)dx=F(b)-F(a)\ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、f(x),g(x),h(x)は整式、k,lは定数である。
以下、$f(x)$が区間$0 \leqq x \leqq 1$上で増加関数になる場合を考える。
$n$を自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、$n$を限りなく大きくすると$S_n$は$\int_0^1f(x)dx$に限りなく近づく。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことと定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学文系過去問
この動画を見る 

大学入試問題#486「なんか見たことある形」 埼玉医科大学(2023) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(\displaystyle \frac{\cos\ x}{\sin\ x}+1) dx$

出典:2023年埼玉医科大学 入試問題
この動画を見る 
PAGE TOP