【高校数学】数Ⅲ-10 複素数の積の図表示② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-10 複素数の積の図表示②

問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.

②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.

③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①複素数$z$に対して,点$z$を原点$O$を中心として,
$\dfrac{5}{6}\pi$だけ回転した点を表す複素数$w_1$を求めよう.

②$z=-4-2i$とする.点$z$を原点$O$を中心として
$\dfrac{\pi}{3}$だけ回転した点を表す複素数$w_2$を求めよう.

③$z=-3-i$とする.点$z$を原点$O$を中心として,
$-\dfrac{\pi}{4}$だけ回転し,原点からの距離を$\sqrt2$倍に
拡大した点を表す複素数$w_3$を求めよう.
投稿日:2017.03.25

<関連動画>

日本女子大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#日本女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$

$a^n$が正の実数となるような最小の自然数$n$

出典:日本女子大学 過去問
この動画を見る 

ポイントは実数 摂南大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-6xy+10y^2-6y+9=0$
$x=? ,y=?$
$(ただしx,yは実数)$
この動画を見る 

複素関数論⑦(逆関数)高専数学*24(1)-(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の値を求めよ.

(1)$\sqrt i$
(2)$\sqrt{1+i}$
(3)$\sqrt{-4}$
この動画を見る 

神奈川大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1-i}{\sqrt{ 3 }-i})^{12}$

出典:神奈川大学 過去問
この動画を見る 

複素関数論④(極限値)*17(1)-(3) 高専数学

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論④(極限値)を解説していきます.
この動画を見る 
PAGE TOP