【高校受験対策/数学】関数35 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数35

問題文全文(内容文):
高校受験対策・関数35

Q.
右の図のように、3点、$A(0,6)$、$B(-2,2)$、$C(2,-2)$があります。
直線$l$は2点$A,B$を通る直線です。直線$m$は2点$B,C$を通る直線で、原点$o$も通っています。
このとき、次の各問に答えなさい。

①直線$l$の式を求めなさい。

②$△ABC$の面積を求めなさい。 ただし、座標軸の単位の長さを1cmとする。

③$y$軸と平行な直線$x=6$をひき、直線$l$との交点を$D$、 直線$m$との交点を$E$とします。
いま線分$DE$上に点$P$をとります。四角形$ABCP$の間の長さが最小になるときの点$P$の座標を求めなさい。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数35

Q.
右の図のように、3点、$A(0,6)$、$B(-2,2)$、$C(2,-2)$があります。
直線$l$は2点$A,B$を通る直線です。直線$m$は2点$B,C$を通る直線で、原点$o$も通っています。
このとき、次の各問に答えなさい。

①直線$l$の式を求めなさい。

②$△ABC$の面積を求めなさい。 ただし、座標軸の単位の長さを1cmとする。

③$y$軸と平行な直線$x=6$をひき、直線$l$との交点を$D$、 直線$m$との交点を$E$とします。
いま線分$DE$上に点$P$をとります。四角形$ABCP$の間の長さが最小になるときの点$P$の座標を求めなさい。
投稿日:2018.10.07

<関連動画>

【少しでも上手く…!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$
\left\{
\begin{array}{l}
(a+2)x + (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
$
$の解が x = 3,y = 1であるとき、a = \boxed{ } , b = \boxed{ }である$
この動画を見る 

正方形の折り返し

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
動画内の図を参照し、$\triangle \rm{A'BC}$の体積を求めよ
この動画を見る 

【高校受験対策】数学-関数18

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のように,$AB = 8cm,\angle ABC=90°,\angle BCD = 90°$の
四角形$ABCD$がある.
点$P$は頂点$A$を出発し,
一定の速さで辺$AB,BC,CD$上を通って,頂点$D$まで移動する.
点$P$が頂点$A$を出発してから$x$秒後の3点$A,P,D$を結んでできる
$△APD$の面積を$ycm^2$とする.
右の図2は, $x$と$y$の関係をグラフに表したものである.
このとき,次の各問いに答えなさい.
ただし,点$P$が頂点$A,D$にあるときは$y=0$とする.

①点$P$が移動する速さは毎秒何$cm$か答えなさい.

②図1の辺$BC$と辺$CD$の長さをそれぞれ求めなさい.

③図2のグラフ中の$a$の値と$b$の値を,それぞれ求めなさい.

④点$P$が辺$BC$上にあるとき,
$△ABP$と$△APD$の面積が等しくなるのは,
点$P$が頂点$A$を出発してから何秒後か求めなさい.

図は動画内参照
この動画を見る 

2023高校入試数学解説63問目 分母が文字の連立方程式 城北高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{4}{x} + \frac{9}{y} = 1 \\
\frac{1}{x} + \frac{6}{y} = -1
\end{array}
\right.
\end{eqnarray}

2023城北学園高等学校
この動画を見る 

30秒にまとめた多分野にまたがる入試問題~全国入試問題解法 #Shorts #数学 #高校受験 #sound

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$c$のとりうる値は何通りあるか.
$(x+a)(x+b)$
を展開すると
$x^2+cx+12$
となる.

中大杉並高校過去問
この動画を見る 
PAGE TOP