大学入試問題#721「落ち着いて計算」 早稲田商学部(2012) 積分方程式 - 質問解決D.B.(データベース)

大学入試問題#721「落ち着いて計算」 早稲田商学部(2012) 積分方程式

問題文全文(内容文):
定数関数でない関数$f(x)$が
$f(x)=x^2-\displaystyle \int_{0}^{1}(f(t)+x)^2 dt$を満たすとき$f(x)$を求めよ。

出典:2012年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
定数関数でない関数$f(x)$が
$f(x)=x^2-\displaystyle \int_{0}^{1}(f(t)+x)^2 dt$を満たすとき$f(x)$を求めよ。

出典:2012年早稲田大学商学部 入試問題
投稿日:2024.01.31

<関連動画>

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)次の条件によって定められる数列$\left\{a_n\right\}$の一般項を求めよ。
$a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)$

2021中央大学経済学部過去問
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。

一橋大過去問
この動画を見る 

一橋大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
この動画を見る 
PAGE TOP