【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【一本道が見えますか】連立方程式:巣鴨高等学校~全国入試問題解法

問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.

巣鴨高校過去問

単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 14 \\
ax + by = 3
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
bx -ay = -5 \\
4x-5y = 11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき$a,b$の値をそれぞれ求めなさい.

巣鴨高校過去問

投稿日:2022.12.08

<関連動画>

【ルーチン】連立方程式の解き方《後編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
この動画を見る 

中2数学「直角三角形の合同証明②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~直角三角形の合同証明②~

例1 次の図は、AB=ACの二等辺三角形ABCで、頂点Bから辺ACに垂線をひき、その交点をD、また、頂点Cから辺ABに垂線をひき、その交点をEとします。このとき、AD=AEであることを証明しなさい。

※図は動画内参照
この動画を見る 

【直感より理解…!】確率:精華女子高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#精華女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
A、B、C、D、Eの5人から3人の委員を選ぶとき
3人の委員の中にAが含まれる確率を求めなさい
この動画を見る 

【数学】中2-36 一次関数の交点をだす① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数の交点をだすなら①____を使おう!

◎交点の座標をだそう!
②$\begin{eqnarray}
\left\{
\begin{array}{l}
y = 3x-5 \\
x +2y =11
\end{array}
\right.
\end{eqnarray}$

③※動画内参照
この動画を見る 

【テスト対策・中1】1章-4

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしよう.

①$(-6)\times (-3)$

②$0.5 \times (-4)$

③$4 \div (-3)$

④$\left(-\dfrac{10}{3}\right)\div (-2)$

⑤$6+5 \times (-2)$

⑥$3\times (-2) -(-20) \div (-4)$

⑦$-\dfrac{3}{5}\times (-4) \div \dfrac{6}{5}$

⑧$\dfrac{6}{5}\div (-3)^2 \times \left(-\dfrac{10}{3}\right)$

⑨$0.8 \times \dfrac{3}{2} \div (-1.2)$

⑩$(-1.35)\div 0.5 \div (-0.3)$
この動画を見る 
PAGE TOP