早稲田(社)対数の基本 - 質問解決D.B.(データベース)

早稲田(社)対数の基本

問題文全文(内容文):
$ \log_{10}2=0.3030,\log_{10}3$
$=0.4771,\log_{10}7=0.8451,7^{70}$
の上2桁の数を求めよ.

早稲田(社)過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log_{10}2=0.3030,\log_{10}3$
$=0.4771,\log_{10}7=0.8451,7^{70}$
の上2桁の数を求めよ.

早稲田(社)過去問
投稿日:2022.09.04

<関連動画>

大学入試問題#453「落とせない問題」 信州大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$

出典:2022年信州大学 入試問題
この動画を見る 

広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る 

広島大 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$log_{2}3$は無理数、証明せよ


(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ


(3)
$log_{2}3$の小数第一位の数を求めよ

出典:広島大学 過去問
この動画を見る 

千葉大2002

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$\log_2 n$が整数でない有理数となることを調べよ.

千葉大過去問
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(4)〜常用対数と桁数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)$15^{32}$は何桁の整数か。ただし、$\log_{10}2=0.3010,\log_{10}3=0.4471$とする。

2022中央大学経済学部過去問
この動画を見る 
PAGE TOP