【テスト対策・中2】2章-2 - 質問解決D.B.(データベース)

【テスト対策・中2】2章-2

問題文全文(内容文):
①連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=-11 \\
bx-ay=13
\end{array}
\right.
\end{eqnarray}$の解が$x=3,y=-1$であるとき,
$a,b$の値を求めなさい.

②連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+4y=2 \\
ax+by=1
\end{array}
\right.
\end{eqnarray}$の解の$x$と$y$を入れかえると,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
ax-by=1
\end{array}
\right.
\end{eqnarray}$の解になる.
このとき,定数$a,b$の値を求めなさい.
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=-11 \\
bx-ay=13
\end{array}
\right.
\end{eqnarray}$の解が$x=3,y=-1$であるとき,
$a,b$の値を求めなさい.

②連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+4y=2 \\
ax+by=1
\end{array}
\right.
\end{eqnarray}$の解の$x$と$y$を入れかえると,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
ax-by=1
\end{array}
\right.
\end{eqnarray}$の解になる.
このとき,定数$a,b$の値を求めなさい.
投稿日:2017.06.09

<関連動画>

気付けば一瞬な連立方程式

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【中学数学】ブーメラン・キツネ型の図形~平行線と角~ 4-5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ブーメラン・キツネ型の図形 平行線と角解説動画です
この動画を見る 

【数学】中2-27 一次関数って?

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
y=①__のように、 yがxの②__で表されるとき、『yはXの一次関数である』という。
ちなみに、aには③__と ④__、bには⑤__っていう名前があるんだ!

$\boxed{A} y=2x+3$
$\boxed{B} y=-4-X$
$\boxed{C} y=5x$
$\boxed{D} y=\displaystyle \frac{x}{3}-9$


⑥ $\boxed{A}~\boxed{D}$の中で一次関数はどれ?

◎⑦~⑩について、それぞれyをXの式で表そう!

⑦x円のものを1000円で買ったときの残金y円


⑧一辺xcmの正方形の面積y$cm^2$


⑨8kmの道のりを、時速xkmで歩いたときにかかる時間と
y時間


⑩縦の長さが6cm、横の長さがxcmの長方形の周の長さycm

⑪ ⑦~⑩で一次関数はどれ?
この動画を見る 

正三角形=正六角形 渋谷教育学園幕張高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正三角形aと正六角形bの面積が等しいとき
$\frac{a}{b} = ?$

渋谷教育学園幕張高等学校
この動画を見る 

【サイコロが4つ!別解付き♪】確率:明治大学附属明治高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 明治大学附属明治高等学校

さいころ4つを同時に投げ出た目の数をそれぞれ a、b、c、dとする。
a、b、c、dの最小公倍数が 10となる場合は、▬ 通りある。
▬部分を求めよ。

※図は動画内参照
この動画を見る 
PAGE TOP