【高校受験対策】数学-関数18 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数18

問題文全文(内容文):
右の図1のように,$AB = 8cm,\angle ABC=90°,\angle BCD = 90°$の
四角形$ABCD$がある.
点$P$は頂点$A$を出発し,
一定の速さで辺$AB,BC,CD$上を通って,頂点$D$まで移動する.
点$P$が頂点$A$を出発してから$x$秒後の3点$A,P,D$を結んでできる
$△APD$の面積を$ycm^2$とする.
右の図2は, $x$と$y$の関係をグラフに表したものである.
このとき,次の各問いに答えなさい.
ただし,点$P$が頂点$A,D$にあるときは$y=0$とする.

①点$P$が移動する速さは毎秒何$cm$か答えなさい.

②図1の辺$BC$と辺$CD$の長さをそれぞれ求めなさい.

③図2のグラフ中の$a$の値と$b$の値を,それぞれ求めなさい.

④点$P$が辺$BC$上にあるとき,
$△ABP$と$△APD$の面積が等しくなるのは,
点$P$が頂点$A$を出発してから何秒後か求めなさい.

図は動画内参照
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のように,$AB = 8cm,\angle ABC=90°,\angle BCD = 90°$の
四角形$ABCD$がある.
点$P$は頂点$A$を出発し,
一定の速さで辺$AB,BC,CD$上を通って,頂点$D$まで移動する.
点$P$が頂点$A$を出発してから$x$秒後の3点$A,P,D$を結んでできる
$△APD$の面積を$ycm^2$とする.
右の図2は, $x$と$y$の関係をグラフに表したものである.
このとき,次の各問いに答えなさい.
ただし,点$P$が頂点$A,D$にあるときは$y=0$とする.

①点$P$が移動する速さは毎秒何$cm$か答えなさい.

②図1の辺$BC$と辺$CD$の長さをそれぞれ求めなさい.

③図2のグラフ中の$a$の値と$b$の値を,それぞれ求めなさい.

④点$P$が辺$BC$上にあるとき,
$△ABP$と$△APD$の面積が等しくなるのは,
点$P$が頂点$A$を出発してから何秒後か求めなさい.

図は動画内参照
投稿日:2016.09.07

<関連動画>

2次の連立方程式 明大明治2023

アイキャッチ画像
単元: #数学(中学生)#連立方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 -4y^2 -10x +25 = 0 \\
x^2 + x -6 -2xy + 4y = 0
\end{array}
\right.
\end{eqnarray}

(x,y)の組をすべて求めよ。
2023明治大学付属明治高等学校(改)
この動画を見る 

中2数学「式による説明③(2けたの自然数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明③~ (2けたの自然数)

例題
2けたの自然数と、その数の十の位の数と一の位の数を入れかえでできる数 との和が11の倍数になる ことを 説明しなさ い。
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 

分母の有理化のタイミング 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{41}{\sqrt{42}}-(\frac{\sqrt{6}}{\sqrt{7}}-\frac{\sqrt{7}}{\sqrt{6}})$
この動画を見る 

【中2 数学】  2-③② グラフを書く!(一次関数)

アイキャッチ画像
単元: #中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 グラフを書く!(一次関数)
[問題]
次のグラフを書け
①$y=3x-2$
②$y=-4x+3$
③$y=\frac{2}{3}x-4$
④$y=-\frac{1}{2}x+5$
※図は動画内参照
この動画を見る 
PAGE TOP