【中学数学】数学検定3級:問題6(27)~(30) - 質問解決D.B.(データベース)

【中学数学】数学検定3級:問題6(27)~(30)

問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell\parallel m$のとき、$∠x$の大きさは何度ですか。
チャプター:

0:00 問題説明
0:13 (23)の解説
1:14 (24)の解説
1:49 (25)の解説
2:34 (26)の解説
3:33 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell\parallel m$のとき、$∠x$の大きさは何度ですか。
投稿日:2022.08.12

<関連動画>

【数検準2級】高校数学:数学検定準2級2次:問5

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問5. 次の問いに答えなさい。
(7) 地点Aから、湖を隔てた地点Bまでの距離を測定するために、地点Aから100m、地点Bから60m離れたところに地点Pをとります。地点Pから地点A、Bをみて$\angle APB$の大きさを調べたところ、$\angle APB=120°$でした。
このとき、2地点A、B間の距離は何mですか。余弦定理を用いて求めなさい。
この動画を見る 

#数検準1級1次#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 3 } \displaystyle \frac{x-3}{\sqrt{ 3x+7 }-4}$

出典:数検準1級1次
この動画を見る 

高校数学:数学検定準1級1次:問題3,4 :ベクトルの内積、複素数平面絶対値と角度

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#複素数平面#平面上のベクトルと内積#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。

問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
   ① zの絶対値を求めなさい。
   ② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
この動画を見る 

20年5月数検準1級1次試験(極限)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.

20年5月数検準1級1次試験(極限)過去問
この動画を見る 

数検準1級 三項間漸化式 極限 高校数学

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
この動画を見る 
PAGE TOP